Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(9): 091401, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489614

RESUMO

Binary coalescences are known sources of gravitational waves (GWs) and they encompass combinations of black holes (BHs) and neutron stars (NSs). Here we show that when BHs are embedded in magnetic fields (B's) larger than approximately 10^{10} G, charged particles colliding around their event horizons can easily have center-of-mass energies in the range of ultrahigh energies (≳10^{18} eV) and become more likely to escape. Such B-embedding and high-energy particles can take place in BH-NS binaries, or even in BH-BH binaries with one of the BHs being charged (with charge-to-mass ratios as small as 10^{-5}, which do not change GW waveforms) and having a residual accretion disk. Ultrahigh center-of-mass energies for particle collisions arise for basically any rotation parameter of the BH when B≳10^{10} G, meaning that it should be a common aspect in binaries, especially in BH-NS ones given the natural presence of a B onto the BH and charged particles due to the magnetosphere of the NS. We estimate that the number of ultrahigh center-of-mass collisions ranges from a few up to millions before the merger of binary compact systems. Thus, binary coalescences may also be efficient sources of ultrahigh energy cosmic rays (UHECRs) and constraints to NS/BH parameters would be possible if UHECRs are detected along with GWs.

2.
Phys Rev Lett ; 117(7): 071103, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27563947

RESUMO

The proposed satellite test of the equivalence principle (STEP) will detect possible violations of the weak equivalence principle by measuring relative accelerations between test masses of different composition with a precision of one part in 10^{18}. A serendipitous by-product of the experimental design is that the absolute or common-mode acceleration of the test masses is also measured to high precision as they oscillate along a common axis under the influence of restoring forces produced by the position sensor currents, which in drag-free mode lead to Newtonian accelerations as small as 10^{-14} g. This is deep inside the low-acceleration regime where modified Newtonian dynamics (MOND) diverges strongly from the Newtonian limit of general relativity. We show that MOND theories (including those based on the widely used "n family" of interpolating functions as well as the covariant tensor-vector-scalar formulation) predict an easily detectable increase in the frequency of oscillations of the STEP test masses if the strong equivalence principle holds. If it does not hold, MOND predicts a cumulative increase in oscillation amplitude which is also detectable. STEP thus provides a new and potentially decisive test of Newton's law of inertia, as well as the equivalence principle in both its strong and weak forms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...