Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Toxins, v. 13, n. 12, 912, dez. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4083

RESUMO

Crotalphine (CRP) is a structural analogue to a peptide that was first identified in the crude venom from the South American rattlesnake Crotalus durissus terrificus. This peptide induces a potent and long-lasting antinociceptive effect that is mediated by the activation of peripheral opioid receptors. The opioid receptor activation regulates a variety of intracellular signaling, including the mitogen-activated protein kinase (MAPK) pathway. Using primary cultures of sensory neurons, it was demonstrated that crotalphine increases the level of activated ERK1/2 and JNK-MAPKs and this increase is dependent on the activation of protein kinase Cζ (PKCζ). However, whether PKCζ-MAPK signaling is critical for crotalphine-induced antinociception is unknown. Here, we biochemically demonstrated that the systemic crotalphine activates ERK1/2 and JNK and decreases the phosphorylation of p38 in the lumbar spinal cord. The in vivo pharmacological inhibition of spinal ERK1/2 and JNK, but not of p38, blocks the antinociceptive effect of crotalphine. Of interest, the administration of a PKCζ pseudosubstrate (PKCζ inhibitor) prevents crotalphine-induced ERK activation in the spinal cord, followed by the abolishment of crotalphine-induced analgesia. Together, our results demonstrate that the PKCζ-ERK signaling pathway is involved in crotalphine-induced analgesia. Our study opens a perspective for the PKCζ-MAPK axis as a target for pain control.

2.
Front Neurosci ; 13: 1018, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616243

RESUMO

The use of morphine, the standard opioid drug, is limited by its undesirable effects, such as tolerance, physical dependence, and hyperalgesia (increased pain sensitivity). Clinical and preclinical studies have reported development of hyperalgesia after prolonged opioid administration or after a single dose of intrathecal (i.t.) morphine in uninjured rats. However, whether a single standard systemic morphine dose is sufficient to decrease the nociceptive threshold in rats is unknown. Here, we showed that a single morphine subcutaneous injection induces analgesia followed by a long-lasting delayed hyperalgesia in uninjured and PGE2 sensitized rats. The i.t injection of extracellular signal-regulated kinase (ERK) inhibitor blocked morphine-induced analgesia, without interfering with the morphine-induced hyperalgesia. However, i.t. injection of SB20358, a p38 inhibitor and SP660125, a JNK inhibitor, decreased the morphine-induced hyperalgesia. Consistently with the behavioral data, Western Blot analysis showed that ERK is more phosphorylated 1 h after morphine, i.e., when the analgesia is detected. Moreover, phospho-p38 and phospho-JNK levels are upregulated 96 h after morphine injection, time that coincides with the hyperalgesic effect. Intrathecal (i.t.) oligodeoxynucleotide (ODN) antisense to cAMP-responsive element binding protein (CREB) attenuated morphine-induced hyperalgesia. Real-time polymerase chain reaction (RT-PCR) analysis showed that CREB downstream genes expressions were significantly up-regulated 96 h after morphine injection in spinal cord. Together, our data suggest that central ERK is involved in the analgesic and hyperalgesic effects of morphine while JNK, p38, and CREB are involved in the morphine-induced delayed hyperalgesia.

3.
Front. Neurosci. ; 13(1018)2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17223

RESUMO

The use of morphine, the standard opioid drug, is limited by its undesirable effects, such as tolerance, physical dependence, and hyperalgesia (increased pain sensitivity). Clinical and preclinical studies have reported development of hyperalgesia after prolonged opioid administration or after a single dose of intrathecal (i.t.) morphine in uninjured rats. However, whether a single standard systemic morphine dose is sufficient to decrease the nociceptive threshold in rats is unknown. Here, we showed that a single morphine subcutaneous injection induces analgesia followed by a long-lasting delayed hyperalgesia in uninjured and PGE2 sensitized rats. The i.t injection of extracellular signal-regulated kinase (ERK) inhibitor blocked morphine-induced analgesia, without interfering with the morphine-induced hyperalgesia. However, i.t. injection of SB20358, a p38 inhibitor and SP660125, a JNK inhibitor, decreased the morphine-induced hyperalgesia. Consistently with the behavioral data, Western Blot analysis showed that ERK is more phosphorylated 1 h after morphine, i.e., when the analgesia is detected. Moreover, phospho-p38 and phospho-JNK levels are upregulated 96 h after morphine injection, time that coincides with the hyperalgesic effect. Intrathecal (i.t.) oligodeoxynucleotide (ODN) antisense to cAMP-responsive element binding protein (CREB) attenuated morphine-induced hyperalgesia. Real-time polymerase chain reaction (RT-PCR) analysis showed that CREB downstream genes expressions were significantly up-regulated 96 h after morphine injection in spinal cord. Together, our data suggest that central ERK is involved in the analgesic and hyperalgesic effects of morphine while JNK, p38, and CREB are involved in the morphine-induced delayed hyperalgesia.

4.
Front Neurosci, v. 13, n. 1018, sep. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2849

RESUMO

The use of morphine, the standard opioid drug, is limited by its undesirable effects, such as tolerance, physical dependence, and hyperalgesia (increased pain sensitivity). Clinical and preclinical studies have reported development of hyperalgesia after prolonged opioid administration or after a single dose of intrathecal (i.t.) morphine in uninjured rats. However, whether a single standard systemic morphine dose is sufficient to decrease the nociceptive threshold in rats is unknown. Here, we showed that a single morphine subcutaneous injection induces analgesia followed by a long-lasting delayed hyperalgesia in uninjured and PGE2 sensitized rats. The i.t injection of extracellular signal-regulated kinase (ERK) inhibitor blocked morphine-induced analgesia, without interfering with the morphine-induced hyperalgesia. However, i.t. injection of SB20358, a p38 inhibitor and SP660125, a JNK inhibitor, decreased the morphine-induced hyperalgesia. Consistently with the behavioral data, Western Blot analysis showed that ERK is more phosphorylated 1 h after morphine, i.e., when the analgesia is detected. Moreover, phospho-p38 and phospho-JNK levels are upregulated 96 h after morphine injection, time that coincides with the hyperalgesic effect. Intrathecal (i.t.) oligodeoxynucleotide (ODN) antisense to cAMP-responsive element binding protein (CREB) attenuated morphine-induced hyperalgesia. Real-time polymerase chain reaction (RT-PCR) analysis showed that CREB downstream genes expressions were significantly up-regulated 96 h after morphine injection in spinal cord. Together, our data suggest that central ERK is involved in the analgesic and hyperalgesic effects of morphine while JNK, p38, and CREB are involved in the morphine-induced delayed hyperalgesia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...