Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Viruses ; 15(4)2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-37112820

RESUMO

The C-terminal portion of the E protein, known as stem, is conserved among flaviviruses and is an important target to peptide-based antiviral strategies. Since the dengue (DENV) and Zika (ZIKV) viruses share sequences in the stem region, in this study we evaluated the cross-inhibition of ZIKV by the stem-based DV2 peptide (419-447), which was previously described to inhibit all DENV serotypes. Thus, the anti-ZIKV effects induced by treatments with the DV2 peptide were tested in both in vitro and in vivo conditions. Molecular modeling approaches have demonstrated that the DV2 peptide interacts with amino acid residues exposed on the surface of pre- and postfusion forms of the ZIKA envelope (E) protein. The peptide did not have any significant cytotoxic effects on eukaryotic cells but efficiently inhibited ZIKV infectivity in cultivated Vero cells. In addition, the DV2 peptide reduced morbidity and mortality in mice subjected to lethal challenges with a ZIKV strain isolated in Brazil. Taken together, the present results support the therapeutic potential of the DV2 peptide against ZIKV infections and open perspectives for the development and clinical testing of anti-flavivirus treatments based on synthetic stem-based peptides.


Assuntos
Flavivirus , Infecção por Zika virus , Zika virus , Chlorocebus aethiops , Animais , Camundongos , Células Vero , Infecção por Zika virus/tratamento farmacológico , Peptídeos/farmacologia , Reações Cruzadas
2.
Front Immunol ; 14: 1071041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006270

RESUMO

Introduction: In the present study we evaluated the features of different recombinant forms of Zika virus (ZIKV) proteins produced in either bacterial (Eschericha coli) or insect cells (Drosophila melanogaster). The ZIKV-envelope glycoprotein (EZIKV) is responsible for virus entry into host cells, is the main target of neutralizing antibodies and has been used as a target antigen either for serological tests or for the development of subunit vaccines. The EZIKV is composed of three structural and functional domains (EDI, EDII, and EDIII), which share extensive sequence conservation with the corresponding counterparts expressed by other flaviviruses, particularly the different dengue virus (DENV) subtypes. Methods: In this study, we carried out a systematic comparison of the antigenicity and immunogenicity of recombinant EZIKV, EDI/IIZIKV and EDIIIZIKV produced in E. coli BL21 and Drosophila S2 cells. For the antigenicity analysis we collected 88 serum samples from ZIKV-infected participants and 57 serum samples from DENV-infected. For immunogenicity, C57BL/6 mice were immunized with two doses of EZIKV, EDI/IIZIKV and EDIIIZIKV produced in E. coli BL21 and Drosophila S2 cells to evaluate humoral and cellular immune response. In addition, AG129 mice were immunized with EZIKV and then challenge with ZIKV. Results: Testing of samples collected from ZIKV-infected and DENV-infected participants demonstrated that the EZIKV and EDIIIZIKV produced in BL21 cells presented better sensitivity and specificity compared to proteins produced in S2 cells. In vivo analyses were carried out with C57BL/6 mice and the results indicated that, despite similar immunogenicity, antigens produced in S2 cells, particularly EZIKV and EDIIIZIKV, induced higher ZIKV-neutralizing antibody levels in vaccinated mice. In addition, immunization with EZIKV expressed in S2 cells delayed the onset of symptoms and increased survival rates in immunocompromised mice. All recombinant antigens, either produced in bacteria or insect cells, induced antigen-specific CD4+ and CD8+ T cell responses. Conclusion: In conclusion, the present study highlights the differences in antigenicity and immunogenicity of recombinant ZIKV antigens produced in two heterologous protein expression systems.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Camundongos , Zika virus/genética , Proteínas do Envelope Viral/química , Anticorpos Antivirais , Drosophila melanogaster , Escherichia coli/genética , Camundongos Endogâmicos C57BL , Vacinas de Subunidades Antigênicas
3.
Viruses ; 15(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36992364

RESUMO

Zika virus (ZIKV), a mosquito-borne pathogen, is an emerging arbovirus associated with sporadic symptomatic cases of great medical concern, particularly among pregnant women and newborns affected with neurological disorders. Serological diagnosis of ZIKV infection is still an unmet challenge due to the co-circulation of the dengue virus, which shares extensive sequence conservation of structural proteins leading to the generation of cross-reactive antibodies. In this study, we aimed to obtain tools for the development of improved serological tests for the detection of ZIKV infection. Polyclonal sera (pAb) and a monoclonal antibody (mAb 2F2) against a recombinant form of the ZIKV nonstructural protein 1 (NS1) allowed the identification of linear peptide epitopes of the NS1 protein. Based on these findings, six chemically synthesized peptides were tested both in dot blot and ELISA assays using convalescent sera collected from ZIKV-infected patients. Two of these peptides specifically detected the presence of ZIKV antibodies and proved to be candidates for the detection of ZIKV-infected subjects. The availability of these tools opens perspectives for the development of NS1-based serological tests with enhanced sensitivity regarding other flaviviruses.


Assuntos
Proteínas não Estruturais Virais , Infecção por Zika virus , Feminino , Humanos , Recém-Nascido , Gravidez , Anticorpos Monoclonais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Peptídeos , Testes Sorológicos , Proteínas não Estruturais Virais/isolamento & purificação , Zika virus
4.
Int J Infect Dis ; 112: 202-204, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34555500

RESUMO

OBJECTIVES: The aim of this study was to achieve greater specificity of dengue virus (DENV) serological tests based on a recombinant antigen derived from non-structural protein 1 (ΔNS1) with regard to cross-reactive Zika virus (ZIKV) anti-NS1 antibody responses. This is of relevance in endemic regions for the serological discrimination of both DENV and ZIKV, such as Brazil and other tropical countries. METHODS: The ΔNS1 proteins were obtained as recombinant antigens and were evaluated as solid-phase-bound antigens in the ELISA test to detect anti-NS1 IgG antibodies. The performance of the ∆NS1-based DENV IgG ELISA was assessed with both mouse and human serum samples previously exposed to DENV or ZIKV. RESULTS: The ∆NS1-based DENV IgG ELISA detected anti-DENV NS1 IgG without cross-reactivity with ZIKV-positive serum samples. The sensitivity and specificity of the assay determined using samples previously characterized by real-time PCR (qRT-PCR) or plaque reduction neutralization assay (PRNT) were 82% and 93%, respectively. CONCLUSION: The ∆NS1-based DENV IgG ELISA conferred enhanced diagnostic specificity for anti-DENV serological tests and may be particularly useful for serological analyses in endemic regions for both DENV and ZIKV transmission.


Assuntos
Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Animais , Anticorpos Antivirais , Dengue/diagnóstico , Ensaio de Imunoadsorção Enzimática , Camundongos , Sensibilidade e Especificidade , Proteínas não Estruturais Virais , Infecção por Zika virus/diagnóstico
5.
Nanomedicine ; 32: 102334, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33188909

RESUMO

Self-assembling proteins may be generated after the addition of short specific amino acid sequences at both the N- and C-terminal ends. To date, this approach has not been evaluated regarding the impact of self-assembled proteins on the induction of immune responses. In the present study, we report the application of this experimental approach to the immunogenicity of protein antigens by measuring the antibody responses in mice immunized with nanoparticles made with a recombinant form of Zika virus nonstructural protein 1 (∆NS1). The results clearly indicated that ∆NS1-derived nanoparticles (NP-∆NS1) are assembled into a 3-dimensional structure with a high degree of multimerization. While ∆NS1 proved to be a weak immunogen, immunization with NP-∆NS1 enhanced subunit vaccines' immunogenicity with improved longevity in vaccinated mice. Thus, immunization with self-assembled antigens (nanovaccines) represents a new and promising strategy to enhance NS1-specific antibodies' induction based on purified recombinant proteins.


Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Nanopartículas/química , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/imunologia , Zika virus/imunologia , Animais , Epitopos/imunologia , Feminino , Imunização , Imunoglobulina G/metabolismo , Camundongos Endogâmicos C57BL
6.
Vaccines (Basel) ; 8(4)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019498

RESUMO

Targeting dendritic cells (DCs) by means of monoclonal antibodies (mAbs) capable of binding their surface receptors (DEC205 and DCIR2) has previously been shown to enhance the immunogenicity of genetically fused antigens. This approach has been repeatedly demonstrated to enhance the induced immune responses to passenger antigens and thus represents a promising therapeutic and/or prophylactic strategy against different infectious diseases. Additionally, under experimental conditions, chimeric αDEC205 or αDCIR2 mAbs are usually administered via an intraperitoneal (i.p.) route, which is not reproducible in clinical settings. In this study, we characterized the delivery of chimeric αDEC205 or αDCIR2 mAbs via an intradermal (i.d.) route, compared the elicited humoral immune responses, and evaluated the safety of this potential immunization strategy under preclinical conditions. As a model antigen, we used type 2 dengue virus (DENV2) nonstructural protein 1 (NS1). The results show that the administration of chimeric DC-targeting mAbs via the i.d. route induced humoral immune responses to the passenger antigen equivalent or superior to those elicited by i.p. immunization with no toxic effects to the animals. Collectively, these results clearly indicate that i.d. administration of DC-targeting chimeric mAbs presents promising approaches for the development of subunit vaccines, particularly against DENV and other flaviviruses.

7.
Viruses ; 12(5)2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384822

RESUMO

In the present study, we evaluated the immunological responses induced by dengue vaccines under experimental conditions after delivery via a transcutaneous (TC) route. Vaccines against type 2 Dengue virus particles (DENV2 New Guinea C (NGC) strain) combined with enterotoxigenic Escherichia coli (ETEC) heat-labile toxin (LT) were administered to BALB/c mice in a three-dose immunization regimen via the TC route. As a control for the parenteral administration route, other mouse groups were immunized with the same vaccine formulation via the intradermic (ID) route. Our results showed that mice vaccinated either via the TC or ID routes developed similar protective immunity, as measured after lethal challenges with the DENV2 NGC strain. Notably, the vaccine delivered through the TC route induced lower serum antibody (IgG) responses with regard to ID-immunized mice, particularly after the third dose. The protective immunity elicited in TC-immunized mice was attributed to different antigen-specific antibody properties, such as epitope specificity and IgG subclass responses, and cellular immune responses, as determined by cytokine secretion profiles. Altogether, the results of the present study demonstrate the immunogenicity and protective properties of a dengue vaccine delivered through the TC route and offer perspectives for future clinical applications.


Assuntos
Vacinas contra Dengue/administração & dosagem , Vírus da Dengue/imunologia , Dengue/prevenção & controle , Administração Cutânea , Animais , Anticorpos Antivirais/sangue , Dengue/sangue , Dengue/imunologia , Dengue/virologia , Vacinas contra Dengue/genética , Vacinas contra Dengue/imunologia , Vírus da Dengue/genética , Humanos , Imunização , Imunoglobulina G/sangue , Injeções Intradérmicas , Masculino , Camundongos , Camundongos Endogâmicos BALB C
8.
Int J Infect Dis ; 95: 276-278, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32289563

RESUMO

OBJECTIVES: This study was performed to determine whether Dengue virus (DENV) immunochromatographic tests can detect and differentiate nonstructural protein 1 (NS1) from each of the four DENV serotypes and do not cross-react with the Zika virus (ZIKV) NS1 protein. METHODS: We compared the specificity of six NS1-based DENV immunochromatographic tests (point of care) in the detection of NS1 proteins from each of the four DENV serotypes and ZIKV. The tests were performed with NS1 proteins produced in mammalian cells. Cross-reactivity was confirmed with a purified recombinant ZIKV NS1 protein and DENV+ or ZIKV+ human serum samples. RESULTS: Cross-reaction was observed in 2 out of the 6 evaluated tests using cell culture supernatants containing NS1 protein of each tested virus. Cross-reactivity with ZIKV was confirmed with purified recombinant ZIKV NS1 produced in Escherichia coli. Further analyses with serum samples collected from DENV+ or ZIKV+ patients confirmed the cross-reactivity with ZIKV protein in 2 tests. CONCLUSIONS: The detection of the NS1 protein is the basis for several commercially available serological DENV diagnostic tests. The present results emphasize the relevance of testing specificity of presently available NS1-based DENV serological tests and the need of adjustments of tests that cross-react with the ZIKV protein. Our results are particularly relevant for regions where both viruses are endemically found, as in the case of Brazil.


Assuntos
Cromatografia de Afinidade/métodos , Vírus da Dengue/imunologia , Dengue/virologia , Proteínas não Estruturais Virais/imunologia , Zika virus/imunologia , Anticorpos Antivirais/sangue , Brasil , Reações Cruzadas , Vírus da Dengue/isolamento & purificação , Glicoproteínas/imunologia , Humanos , Sensibilidade e Especificidade , Especificidade da Espécie
9.
Mol Ther ; 28(5): 1276-1286, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32220305

RESUMO

Malignant brain tumors are among the most aggressive cancers with poor prognosis and no effective treatment. Recently, we reported the oncolytic potential of Zika virus infecting and destroying the human central nervous system (CNS) tumors in vitro and in immunodeficient mice model. However, translating this approach to humans requires pre-clinical trials in another immunocompetent animal model. Here, we analyzed the safety of Brazilian Zika virus (ZIKVBR) intrathecal injections in three dogs bearing spontaneous CNS tumors aiming an anti-tumoral therapy. We further assessed some aspects of the innate immune and inflammatory response that triggers the anti-tumoral response observed during the ZIKVBR administration in vivo and in vitro. For the first time, we showed that there were no negative clinical side effects following ZIKVBR CNS injections in dogs, confirming the safety of the procedure. Furthermore, the intrathecal ZIKVBR injections reduced tumor size in immunocompetent dogs bearing spontaneous intracranial tumors, improved their neurological clinical symptoms significantly, and extended their survival by inducing the destruction specifically of tumor cells, sparing normal neurons, and activating an immune response. These results open new perspectives for upcoming virotherapy using ZIKV to destroy and induce an anti-tumoral immune response in CNS tumors for which there are currently no effective treatments.


Assuntos
Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/terapia , Terapia Viral Oncolítica/métodos , Segurança do Paciente , Carga Tumoral , Infecção por Zika virus/complicações , Zika virus/imunologia , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Citocinas/metabolismo , Modelos Animais de Doenças , Cães , Imunidade , Injeções Espinhais , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/virologia , Monócitos/imunologia , Monócitos/virologia , Neurônios/metabolismo , Neurônios/virologia , Resultado do Tratamento
10.
Front Med Technol ; 2: 558984, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35047876

RESUMO

Dengue virus represents the main arbovirus affecting humans, but there are no effective drugs or available worldwide licensed vaccine formulations capable of conferring full protection against the infection. Experimental studies and results generated after the release of the licensed anti-DENV vaccine demonstrated that induction of high-titer neutralizing antibodies does not represent the sole protection correlate and that, indeed, T cell-based immune responses plays a relevant role in the establishment of an immune protective state. In this context, this study aimed to further demonstrate protective features of immune responses elicited in immunocompetent C57BL/6 mice immunized with three plasmids encoding DENV2 nonstructural proteins (NS1, NS3, and NS5), which were subsequently challenged with a DENV2 strain naturally capable of inducing lethal encephalitis in immunocompetent mouse strains. The animals were immunized intramuscularly with the DNA vaccine mix and complete protection was observed among vaccinated mice. Vaccine induced protection correlated with the cytokine profiles expressed by spleen cells and brain-infiltrating mononuclear cells. The results confirm the pivotal role of cellular immune responses targeting nonstructural DENV proteins and validate the experimental model based on a DENV2 strain capable of infecting and killing immunocompetent mice as a tool for the evaluation of protective immunity induced by anti-DENV vaccines.

11.
Front Med Technol ; 2: 604160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35047887

RESUMO

Zika virus (ZIKV) is a globally-distributed flavivirus transmitted to humans by Aedes mosquitoes, usually causing mild symptoms that may evolve to severe conditions, including neurological alterations, such as neonatal microcephaly and Guillain-Barré syndrome. Due to the absence of specific and effective preventive methods, we designed a new subunit vaccine based on a DNA vector (pgDNS1-ZIKV) encoding the non-structural protein 1 (NS1) genetically fused to the Herpes Simplex Virus (HSV) glycoprotein D (gD) protein. Recombinant plasmids were replicated in Escherichia coli and the expression of the target protein was confirmed in transfected HEK293 cells. C57BL/6 and AB6 (IFNAR1-/-) mice were i.m. immunized by electroporation in order to evaluate pgDNS1-ZIKV immunogenicity. After two doses, high NS1-specific IgG antibody titers were measured in serum samples collected from pgDNS1-ZIKV-immunized mice. The NS1-specific antibodies were capable to bind the native protein expressed in infected mammalian cells. Immunization with pgDNS1-ZIKV increased both humoral and cellular immune responses regarding mice immunized with a ZIKV NS1 encoding vaccine. Immunization with pgDNS1-ZIKV reduced viremia and morbidity scores leading to enhanced survival of immunodeficient AB6 mice challenged with a lethal virus load. These results give support to the use of ZIKV NS1 as a target antigen and further demonstrate the relevant adjuvant effects of HSV-1 gD.

13.
Mol. Ther. ; 28(5)2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17570

RESUMO

Malignant brain tumors are among the most aggressive cancers with poor prognosis and no effective treatment. Recently, we reported the oncolytic potential of Zika virus infecting and destroying the human central nervous system (CNS) tumors in vitro and in immunodeficient mice model. However, translating this approach to humans requires pre-clinical trials in another immunocompetent animal model. Here, we analyzed the safety of Brazilian Zika virus (ZIKVBR) intrathecal injections in three dogs bearing spontaneous CNS tumors aiming an anti-tumoral therapy. We further assessed some aspects of the innate immune and inflammatory response that triggers the anti-tumoral response observed during the ZIKVBR administration in vivo and in vitro. For the first time, we showed that there were no negative clinical side effects following ZIKVBR CNS injections in dogs, confirming the safety of the procedure. Furthermore, the intrathecal ZIKVBR injections reduced tumor size in immunocompetent dogs bearing spontaneous intracranial tumors, improved their neurological clinical symptoms significantly, and extended their survival by inducing the destruction specifically of tumor cells, sparing normal neurons, and activating an immune response. These results open new perspectives for upcoming virotherapy using ZIKV to destroy and induce an anti-tumoral immune response in CNS tumors for which there are currently no effective treatments.

14.
Mol Ther, v. 28, n. 5, mai. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2990

RESUMO

Malignant brain tumors are among the most aggressive cancers with poor prognosis and no effective treatment. Recently, we reported the oncolytic potential of Zika virus infecting and destroying the human central nervous system (CNS) tumors in vitro and in immunodeficient mice model. However, translating this approach to humans requires pre-clinical trials in another immunocompetent animal model. Here, we analyzed the safety of Brazilian Zika virus (ZIKVBR) intrathecal injections in three dogs bearing spontaneous CNS tumors aiming an anti-tumoral therapy. We further assessed some aspects of the innate immune and inflammatory response that triggers the anti-tumoral response observed during the ZIKVBR administration in vivo and in vitro. For the first time, we showed that there were no negative clinical side effects following ZIKVBR CNS injections in dogs, confirming the safety of the procedure. Furthermore, the intrathecal ZIKVBR injections reduced tumor size in immunocompetent dogs bearing spontaneous intracranial tumors, improved their neurological clinical symptoms significantly, and extended their survival by inducing the destruction specifically of tumor cells, sparing normal neurons, and activating an immune response. These results open new perspectives for upcoming virotherapy using ZIKV to destroy and induce an anti-tumoral immune response in CNS tumors for which there are currently no effective treatments.

15.
PLoS One ; 14(1): e0211162, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30682103

RESUMO

In this study we evaluated the association of high hydrostatic pressure (HHP) and alkaline pH as a minimally denaturing condition for the solubilization of inclusion bodies (IBs) generated by recombinant proteins expressed by Escherichia coli strains. The method was successfully applied to a recombinant form of the dengue virus (DENV) non-structural protein 1 (NS1). The minimal pH for IBs solubilization at 1 bar was 12 while a pH of 10 was sufficient for solubilization at HHP: 2.4 kbar for 90 min and 0.4 kbar for 14 h 30 min. An optimal refolding condition was achieved by compression of IBs at HHP and pH 10.5 in the presence of arginine, oxidized and reduced glutathiones, providing much higher yields (up to 8-fold) than association of HHP and GdnHCl via an established protocol. The refolded NS1, 109 ± 9.5 mg/L bacterial culture was recovered mainly as monomer and dimer, corresponding up to 90% of the total protein and remaining immunologically active. The proposed conditions represent an alternative for the refolding of immunologically active recombinant proteins expressed as IBs.


Assuntos
Vírus da Dengue/química , Redobramento de Proteína , Proteínas não Estruturais Virais/química , Vírus da Dengue/genética , Concentração de Íons de Hidrogênio , Pressão Hidrostática , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas não Estruturais Virais/genética
16.
AMB Express ; 10(1): 1, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31893321

RESUMO

Diagnosing Zika virus (ZIKV) infections has been challenging due to the cross-reactivity of induced antibodies with other flavivirus. The concomitant occurrence of ZIKV and Dengue virus (DENV) in endemic regions requires diagnostic tools with the ability to distinguish these two viral infections. Recent studies demonstrated that immunoassays using the C-terminal fragment of ZIKV NS1 antigen (ΔNS1) can be used to discriminate ZIKV from DENV infections. In order to be used in serological tests, the expression/solubility of ΔNS1 and growth of recombinant E. coli strain were optimized by Response Surface Methodology. Temperature, time and IPTG concentration were evaluated. According to the model, the best condition determined in small scale cultures was 21 °C for 20 h with 0.7 mM of IPTG, which predicted 7.5 g/L of biomass and 962 mg/L of ΔNS1. These conditions were validated and used in a 6-L batch in the bioreactor, which produced 6.4 g/L of biomass and 500 mg/L of ΔNS1 in 12 h of induction. The serological ELISA test performed with purified ΔNS1 showed low cross-reactivity with antibodies from DENV-infected human subjects. Denaturation of ΔNS1 decreased the detection of anti-ZIKV antibodies, thus indicating the contribution of conformational epitopes and confirming the importance of properly folded ΔNS1 for the specificity of the serological analyses. Obtaining high yields of soluble ΔNS1 supports the viability of an effective serologic diagnostic test capable of differentiating ZIKV from other flavivirus infections.

17.
AMB Express ; 10: 1, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17322

RESUMO

Diagnosing Zika virus (ZIKV) infections has been challenging due to the cross-reactivity of induced antibodies with other flavivirus. The concomitant occurrence of ZIKV and Dengue virus (DENV) in endemic regions requires diagnostic tools with the ability to distinguish these two viral infections. Recent studies demonstrated that immunoassays using the C-terminal fragment of ZIKV NS1 antigen (DeltaNS1) can be used to discriminate ZIKV from DENV infections. In order to be used in serological tests, the expression/solubility of DeltaNS1 and growth of recombinant E. coli strain were optimized by Response Surface Methodology. Temperature, time and IPTG concentration were evaluated. According to the model, the best condition determined in small scale cultures was 21 °C for 20 h with 0.7 mM of IPTG, which predicted 7.5 g/L of biomass and 962 mg/L of DeltaNS1. These conditions were validated and used in a 6-L batch in the bioreactor, which produced 6.4 g/L of biomass and 500 mg/L of DeltaNS1 in 12 h of induction. The serological ELISA test performed with purified DeltaNS1 showed low cross-reactivity with antibodies from DENV-infected human subjects. Denaturation of DeltaNS1 decreased the detection of anti-ZIKV antibodies, thus indicating the contribution of conformational epitopes and confirming the importance of properly folded DeltaNS1 for the specificity of the serological analyses. Obtaining high yields of soluble DeltaNS1 supports the viability of an effective serologic diagnostic test capable of differentiating ZIKV from other flavivirus infections.

18.
AMB Express, v. 10, 1, dec. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2899

RESUMO

Diagnosing Zika virus (ZIKV) infections has been challenging due to the cross-reactivity of induced antibodies with other flavivirus. The concomitant occurrence of ZIKV and Dengue virus (DENV) in endemic regions requires diagnostic tools with the ability to distinguish these two viral infections. Recent studies demonstrated that immunoassays using the C-terminal fragment of ZIKV NS1 antigen (DeltaNS1) can be used to discriminate ZIKV from DENV infections. In order to be used in serological tests, the expression/solubility of DeltaNS1 and growth of recombinant E. coli strain were optimized by Response Surface Methodology. Temperature, time and IPTG concentration were evaluated. According to the model, the best condition determined in small scale cultures was 21 °C for 20 h with 0.7 mM of IPTG, which predicted 7.5 g/L of biomass and 962 mg/L of DeltaNS1. These conditions were validated and used in a 6-L batch in the bioreactor, which produced 6.4 g/L of biomass and 500 mg/L of DeltaNS1 in 12 h of induction. The serological ELISA test performed with purified DeltaNS1 showed low cross-reactivity with antibodies from DENV-infected human subjects. Denaturation of DeltaNS1 decreased the detection of anti-ZIKV antibodies, thus indicating the contribution of conformational epitopes and confirming the importance of properly folded DeltaNS1 for the specificity of the serological analyses. Obtaining high yields of soluble DeltaNS1 supports the viability of an effective serologic diagnostic test capable of differentiating ZIKV from other flavivirus infections.

19.
Viruses ; 10(11): 615, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15673

RESUMO

We followed the presence of Zika virus (ZIKV) in four healthy adults (two men and two women), for periods ranging from 78 to 298 days post symptom onset. The patients were evaluated regarding the presence of the virus in different body fluids (blood, saliva, urine and semen), development of immune responses (including antibodies, cytokines and chemokines), and virus genetic variation within samples collected from semen and urine during the infection course. The analysis was focused primarily on the two male patients who shed the virus for up to 158 days after the initial symptoms. ZIKV particles were detected in the spermatozoa cytoplasm and flagella, in immature sperm cells and could also be isolated from semen in cell culture, confirming that the virus is able to preserve integrity and infectivity during replication in the male reproductive system (MRS). Despite the damage caused by ZIKV infection within the MRS, our data showed that ZIKV infection did not result in infertility at least in one of the male patients. This patient was able to conceive a child after the infection. We also detected alterations in the male genital cytokine milieu, which could play an important role in the replication and transmission of the virus which could considerably increase the risk of ZIKV sexual spread. In addition, full genome ZIKV sequences were obtained from several samples (mainly semen), which allowed us to monitor the evolution of the virus within a patient during the infection course. We observed genetic changes over time in consensus sequences and lower frequency intra-host single nucleotide variants (iSNV), that suggested independent compartmentalization of ZIKV populations in the reproductive and urinary systems. Altogether, the present observations confirm the risks associated with the long-term replication and shedding of ZIKV in the MRS and help to elucidate patterns of intra-host genetic evolution during long term replication of the virus.

20.
Viruses, v. 10, n. 11, 615, 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2602

RESUMO

We followed the presence of Zika virus (ZIKV) in four healthy adults (two men and two women), for periods ranging from 78 to 298 days post symptom onset. The patients were evaluated regarding the presence of the virus in different body fluids (blood, saliva, urine and semen), development of immune responses (including antibodies, cytokines and chemokines), and virus genetic variation within samples collected from semen and urine during the infection course. The analysis was focused primarily on the two male patients who shed the virus for up to 158 days after the initial symptoms. ZIKV particles were detected in the spermatozoa cytoplasm and flagella, in immature sperm cells and could also be isolated from semen in cell culture, confirming that the virus is able to preserve integrity and infectivity during replication in the male reproductive system (MRS). Despite the damage caused by ZIKV infection within the MRS, our data showed that ZIKV infection did not result in infertility at least in one of the male patients. This patient was able to conceive a child after the infection. We also detected alterations in the male genital cytokine milieu, which could play an important role in the replication and transmission of the virus which could considerably increase the risk of ZIKV sexual spread. In addition, full genome ZIKV sequences were obtained from several samples (mainly semen), which allowed us to monitor the evolution of the virus within a patient during the infection course. We observed genetic changes over time in consensus sequences and lower frequency intra-host single nucleotide variants (iSNV), that suggested independent compartmentalization of ZIKV populations in the reproductive and urinary systems. Altogether, the present observations confirm the risks associated with the long-term replication and shedding of ZIKV in the MRS and help to elucidate patterns of intra-host genetic evolution during long term replication of the virus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...