Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 266: 116153, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277916

RESUMO

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that affects social skills, language, communication, and behavioral skills, significantly impacting the individual's quality of life. Recently, numerous works have centered on the connections between the immune and central nervous systems and the influence of neuroinflammation on autism symptomatology. Marine natural products are considered as important alternative sources of different types of compounds, including polysaccharides, polyphenols, sterols, carotenoids, terpenoids and, alkaloids. These compounds present anti-inflammatory, neuroprotective and immunomodulatory activities, exhibiting a potential for the treatment of many diseases. Although many studies address the marine compounds in the modulation of inflammatory mediators, there is a gap regarding their use in the regulation of the immune system in ASD. Thus, this review aims to provide a better understanding regarding cytokines, chemokines, growth factors and immune responses in ASD, as well as the potential of bioactive marine compounds in the immune regulation in ASD. We expect that this review would contribute to the development of therapeutic alternatives for controlling immune mediators and inflammation in ASD.


Assuntos
Transtorno do Espectro Autista , Humanos , Transtorno do Espectro Autista/tratamento farmacológico , Qualidade de Vida , Sistema Imunitário , Inflamação/tratamento farmacológico , Citocinas , Fatores Imunológicos
2.
Purinergic Signal ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38151691

RESUMO

In the avian retina, ADP induces the proliferation of late developing glia progenitors. Here, we show that in serum-containing retinal cell cultures, ADP-induced increase in [3H]-thymidine incorporation can be prevented by the IGF-1 receptor antagonists AG1024 and I-OMe-Tyrphostin AG 538, suggesting the participation of IGF-1 in ADP-mediated progenitor proliferation. In contrast, no increase in [3H]-thymidine incorporation is observed in retinal cultures treated only with IGF-1. Under serum starvation, while no increase in cell proliferation is detected in cultures treated only with ADP or IGF-1, a significant increase in [3H]-thymidine incorporation and number of PCNA expressing cells is observed in cultures treated concomitantly with ADP plus IGF-1, suggesting that both molecules are required to induce proliferation of retinal progenitors. In serum-starved cultures, although an increase in cell viability is detected by MTT assays in IGF-1-treated cultures, no significant increase in viability of [3H]-thymidine labeled progenitors is observed, suggesting that IGF-1 may contribute to survival of postmitotic cells in culture. While only ADP increases intracellular calcium, only IGF-1 induces the phosphorylation of Akt in the retinal cultures. IGF-1 through the PI3K/Akt pathway induces a significant increase in the transcription and expression of CDK1 with a decrease in phospho-histone H3 expression that is concomitant with an increase in the expression of cyclins D1 and E and CDK2. These findings suggest that IGF-1 stimulates CDK-1 mRNA and protein expression that enable progenitors to progress through the cell cycle. However, signaling of ADP in the presence IGF-I seems to be required for DNA synthesis.

3.
J Intensive Care Med ; 38(8): 751-759, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36939479

RESUMO

BACKGROUND: It is known that patients with COVID-19 are at high risk of developing delirium. The aim of the study was to compare the incidence of delirium between critically ill patients with and without a diagnosis of COVID-19. METHODS: This is a retrospective study conducted in a southern Brazilian hospital from March 2020 to January 2021. Patients were divided into two groups: the COVID-19 group consisted of patients with a diagnosis of COVID-19 confirmed by reverse transcription-polymerase chain reaction (RT-PCR) or serological tests who were admitted to specific ICUs. The non-COVID-19 group consisted of patients with other surgical and medical diagnoses who were admitted to non-COVID ICUs. All patients were evaluated daily using the Intensive Care Delirium Screening Checklist (ICDSC). The two cohorts were compared in terms of the diagnosis of delirium. RESULTS: Of the 649 patients who remained more than 48 h in the ICU, 523 were eligible for the study (COVID-19 group: 292, non-COVID-19 group: 231). There were 119 (22.7%) patients who had at least one episode of delirium, including 96 (32.9%) in the COVID-19 group and 23 (10.0%) in the non-COVID-19 group (odds ratio [OR] 4.42; 95% confidence interval [CI], 2.69 to 7.26; p < 0.001). Among patients mechanically ventilated for two days or more, the incidence of delirium did not differ between groups (COVID-19: 89/211, 42.1% vs non-COVID-19: 19/47, 40.4%; p = 0.82). Logistic regression showed that the duration of mechanical ventilation was the only independent factor associated with delirium (p = 0.001). CONCLUSION: COVID-19 can be associated with a higher incidence of delirium among critically ill patients, but there was no difference in this incidence between groups when mechanical ventilation lasted two days or more.


Assuntos
COVID-19 , Delírio , Humanos , Delírio/epidemiologia , Delírio/etiologia , Delírio/diagnóstico , Estudos Retrospectivos , Estado Terminal , Incidência , COVID-19/complicações , COVID-19/epidemiologia , Unidades de Terapia Intensiva , Respiração Artificial
4.
Materials (Basel) ; 14(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34640255

RESUMO

Successful biomaterials for bone tissue therapy must present different biocompatible properties, such as the ability to stimulate the migration and proliferation of osteogenic cells on the implantable surface, to increase attachment and avoid the risks of implant movement after surgery. The present work investigates the applicability of a three-dimensional (3D) model of bone cells (osteospheres) in the evaluation of osteoconductive properties of different implant surfaces. Three different titanium surface treatments were tested: machined (MA), sandblasting and acid etching (BE), and Hydroxyapatite coating by plasma spray (PSHA). The surfaces were characterized by Scanning Electron Microscopy (SEM) and atomic force microscopy (AFM), confirming that they present very distinct roughness. After seeding the osteospheres, cell-surface interactions were studied in relation to cell proliferation, migration, and spreading. The results show that BE surfaces present higher densities of cells, leaving the aggregates towards than titanium surfaces, providing more evidence of migration. The PSHA surface presented the lowest performance in all analyses. The results indicate that the 3D model allows the focal analysis of an in vitro cell/surfaces interaction of cells and surfaces. Moreover, by demonstrating the agreement with the clinical data observed in the literature, they suggest a potential use as a predictive preclinical tool for investigating osteoconductive properties of novel biomaterials for bone therapy.

5.
Brain Behav Immun Health ; 11: 100190, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34589727

RESUMO

BACKGROUND: Toxoplasmosis is caused by the parasite Toxoplasma gondii that can infect the central nervous system (CNS), promoting neuroinflammation, neuronal loss, neurotransmitter imbalance and behavioral alterations. T. gondii infection is also related to neuropsychiatric disorders such as schizophrenia. The pathogenicity and inflammatory response in rodents are different to the case of humans, compromising the correlation between the behavioral alterations and physiological modifications observed in the disease. In the present work we used BrainSpheres, a 3D CNS model derived from human pluripotent stem cells (iPSC), to investigate the morphological and biochemical repercussions of T. gondii infection in human neural cells. METHODS: We evaluated T. gondii ME49 strain proliferation and cyst formation in both 2D cultured human neural cells and BrainSpheres. Aspects of cell morphology, ultrastructure, viability, gene expression of neural phenotype markers, as well as secretion of inflammatory mediators were evaluated for 2 and 4 weeks post infection in BrainSpheres. RESULTS: T. gondii can infect BrainSpheres, proliferating and inducing cysts formation, neural cell death, alteration in neural gene expression and triggering the release of several inflammatory mediators. CONCLUSIONS: BrainSpheres reproduce many aspects of T. gondii infection in human CNS, constituting a useful model to study the neurotoxicity and neuroinflammation mediated by the parasite. In addition, these data could be important for future studies aiming at better understanding possible correlations between psychiatric disorders and human CNS infection with T. gondii.

6.
Part Fibre Toxicol ; 16(1): 22, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31159811

RESUMO

BACKGROUND: The blood brain barrier (BBB) is the bottleneck of brain-targeted drug development. Due to their physico-chemical properties, nanoparticles (NP) can cross the BBB and accumulate in different areas of the central nervous system (CNS), thus are potential tools to carry drugs and treat brain disorders. In vitro systems and animal models have demonstrated that some NP types promote neurotoxic effects such as neuroinflammation and neurodegeneration in the CNS. Thus, risk assessment of the NP is required, but current 2D cell cultures fail to mimic complex in vivo cellular interactions, while animal models do not necessarily reflect human effects due to physiological and species differences. RESULTS: We evaluated the suitability of in vitro models that mimic the human CNS physiology, studying the effects of metallic gold NP (AuNP) functionalized with sodium citrate (Au-SC), or polyethylene glycol (Au-PEG), and polymeric polylactic acid NP (PLA-NP). Two different 3D neural models were used (i) human dopaminergic neurons differentiated from the LUHMES cell line (3D LUHMES) and (ii) human iPSC-derived brain spheroids (BrainSpheres). We evaluated NP uptake, mitochondrial membrane potential, viability, morphology, secretion of cytokines, chemokines and growth factors, and expression of genes related to ROS regulation after 24 and 72 h exposures. NP were efficiently taken up by spheroids, especially when PEGylated and in presence of glia. AuNP, especially PEGylated AuNP, effected mitochondria and anti-oxidative defense. PLA-NP were slightly cytotoxic to 3D LUHMES with no effects to BrainSpheres. CONCLUSIONS: 3D brain models, both monocellular and multicellular are useful in studying NP neurotoxicity and can help identify how specific cell types of CNS are affected by NP.


Assuntos
Encéfalo/efeitos dos fármacos , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Modelos Biológicos , Poliésteres/química , Esferoides Celulares/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Sistemas de Liberação de Medicamentos , Expressão Gênica/efeitos dos fármacos , Ouro/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Poliésteres/metabolismo , Polietilenoglicóis/química , Citrato de Sódio/química , Esferoides Celulares/metabolismo , Propriedades de Superfície
7.
J Cell Biochem ; 120(10): 16370-16378, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31127662

RESUMO

Nanomedicine is an emerging research area which has brought new possibilities and promising applications in image, diagnosis, and treatment. Nanoparticles (NPs) for medicinal purposes can be made of several material types such as silica, carbon, different polymers, and metals as silver, copper, titanium, and gold. Gold NPs (AuNPs) are the most studied and used, mostly due to their characteristics including simple preparation, controllable size and distribution, biocompatibility, good acceptance of surface modifications, and specific surface plasmon resonance (SPR). This study reviews the scientific literature regarding the potential applications of AuNPs in the development of new diagnostic and therapeutic strategies for nanomedicine, including their biomedical use as a drug carrier, as an agent in radio and phototherapy, and bioimaging for image diagnosis. While it becomes clear that much research remains to be done to improve the use of these nanoparticles, with particular concern for safety issues, the evidence from the literature already points to the great potential of AuNPs in nanomedicine.


Assuntos
Ouro/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Nanomedicina , Humanos
8.
J Nanobiotechnology ; 15(1): 11, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28143572

RESUMO

BACKGROUND: Poly-lactic acid nanoparticles (PLA-NP) are a type of polymeric NP, frequently used as nanomedicines, which have advantages over metallic NP such as the ability to maintain therapeutic drug levels for sustained periods of time. Despite PLA-NP being considered biocompatible, data concerning alterations in cellular physiology are scarce. METHODS: We conducted an extensive evaluation of PLA-NP biocompatibility in human lung epithelial A549 cells using high throughput screening and more complex methodologies. These included measurements of cytotoxicity, cell viability, immunomodulatory potential, and effects upon the cells' proteome. We used non- and green-fluorescent PLA-NP with 63 and 66 nm diameters, respectively. Cells were exposed with concentrations of 2, 20, 100 and 200 µg/mL, for 24, 48 and 72 h, in most experiments. Moreover, possible endocytic mechanisms of internalization of PLA-NP were investigated, such as those involving caveolae, lipid rafts, macropinocytosis and clathrin-coated pits. RESULTS: Cell viability and proliferation were not altered in response to PLA-NP. Multiplex analysis of secreted mediators revealed a low-level reduction of IL-12p70 and vascular epidermal growth factor (VEGF) in response to PLA-NP, while all other mediators assessed were unaffected. However, changes to the cells' proteome were observed in response to PLA-NP, and, additionally, the cellular stress marker miR155 was found to reduce. In dual exposures of staurosporine (STS) with PLA-NP, PLA-NP enhanced susceptibility to STS-induced cell death. Finally, PLA-NP were rapidly internalized in association with clathrin-coated pits, and, to a lesser extent, with lipid rafts. CONCLUSIONS: These data demonstrate that PLA-NP are internalized and, in general, tolerated by A549 cells, with no cytotoxicity and no secretion of pro-inflammatory mediators. However, PLA-NP exposure may induce modification of biological functions of A549 cells, which should be considered when designing drug delivery systems. Moreover, the pathways of PLA-NP internalization we detected could contribute to the improvement of selective uptake strategies.


Assuntos
Materiais Biocompatíveis/química , Cavéolas/metabolismo , Células Epiteliais/efeitos dos fármacos , Microdomínios da Membrana , Nanopartículas/química , Poliésteres/química , Células A549 , Sobrevivência Celular , Clatrina/química , Sistemas de Liberação de Medicamentos , Células Epiteliais/citologia , Humanos , Interleucina-12/metabolismo , MicroRNAs/metabolismo , Tamanho da Partícula , Pinocitose , Proteoma , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
J Cell Physiol ; 231(9): 1862-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26754950

RESUMO

Production of inflammatory cytokines plays important roles in the response against tissue injury and in host defense. Alterations in the production of inflammatory cytokines may cause local or systemic inflammatory imbalance, culminating in organ failure or lethal systemic inflammation. The cholinergic anti-inflammatory pathway has been implicated as an important mechanism to regulate inflammation of targeted tissue. In this review, we discuss important advances, conflicting and controversial findings regarding the involvement of parasympathetic vagus and sympathetic splenic nerve through acetylcholine (ACh) release and α7 nicotinic acetylcholine receptor (nAChRα7) activation in the spleen. In addition, we address the involvement of cholinergic control of inflammation in other organs innerved by the vagus nerve such as gut, liver, kidney and lung, and independent of parasympathetic innervations such as skin and skeletal muscle. Then, other structures and mechanisms independent of vagus or splenic nerve may be involved in this process, such as local cells and motor neurons producing ACh. Altogether, the convergence of these findings may contribute to current anti-inflammatory strategies involving selective drug-targeting and electrical nerve stimulation. J. Cell. Physiol. 231: 1862-1869, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Citocinas/metabolismo , Inflamação/metabolismo , Reflexo/fisiologia , Baço/metabolismo , Nervo Vago/metabolismo , Animais , Humanos , Inflamação/tratamento farmacológico , Reflexo/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
10.
Toxicol In Vitro ; 29(7): 1653-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26116398

RESUMO

Nanostructured materials are widely used in many applications of industry and biomedical fields. Nanoparticles emerges as potential pharmacological carriers that can be applied in the regenerative medicine, diagnosis and drug delivery. Different types of nanoparticles exhibit ability to cross the brain blood barrier (BBB) and accumulate in several brain areas. Then, efforts have been done to develop safer nanocarrier systems to treat disorders of central nervous system (CNS). However, several in vitro and in vivo studies demonstrated that nanoparticles of different materials exhibit a wide range of neurotoxic effects inducing neuroinflammation and cognitive impairment. For this reason, polymeric nanoparticles arise as a promisor alternative due to their biocompatible and biodegradable properties. After an overview of CNS location and neurotoxic effects of translocated nanoparticles, this review addresses the use of polymeric nanoparticles to the treatment of neuroinfectious diseases, as acquired immunodeficiency syndrome (AIDS) and meningitis.


Assuntos
Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Nanopartículas/toxicidade , Animais , Materiais Biocompatíveis , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças Transmissíveis/tratamento farmacológico , Humanos , Nanopartículas/administração & dosagem
11.
Toxicol In Vitro ; 29(5): 819-27, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25790728

RESUMO

Gold nanoparticles (AuNP) have been widely used for many applications, including as biological carriers. A better understanding concerning AuNP safety on muscle cells is crucial, since it could be a potential tool in the nanomedicine field. Here, we describe the impact of polyethylene glycol-coated gold nanoparticles (PEG-AuNP) interaction with differentiated skeletal muscle C2C12 cells on cell viability, mitochondria function, cell signaling related to survival, cytokine levels and susceptibility to apoptosis. Intracellular localization of 4.5 nm PEG-AuNP diameter size was evidenced by STEM-in-SEM in myotube cells. Methods for cytotoxicity analysis showed that PEG-AuNP did not affect cell viability, but intracellular ATP levels and mitochondrial membrane potential increased. Phosphorylation of ERK was not altered but p-AKT levels reduced (p<0.01). Pre-treatment of cells with PEG-AuNP followed by staurosporine induction increased the caspases-3/7 activity. Indeed, cytokines analysis revealed a sharp increase of IFN-γ and TGF-ß1 levels after PEG-AuNP treatment, suggesting that inflammatory and fibrotic phenotypes process were activated. These data demonstrate that PEG-AuNP affect the myotube physiology leading these cells to be more susceptible to death stimuli in the presence of staurosporine. Altogether, these results present evidence that PEG-AuNP affect the susceptibility to apoptosis of muscle cells, contributing to development of safer strategies for intramuscular delivery.


Assuntos
Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Fibras Musculares Esqueléticas/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Caspase 3/metabolismo , Caspase 7/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ouro/química , Interferon gama/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/química , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Polietilenoglicóis/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta/metabolismo
12.
Biochem Biophys Res Commun ; 430(2): 512-8, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23232112

RESUMO

IL-6 is a pleiotropic cytokine classically denominated pro-inflammatory. It has been already demonstrated that IL-6 can increase the survival of retinal ganglion cells (RGC) in culture. In this work, we show that the trophic effect of IL-6 is mediated by adenosine receptor (A1R) activation. The neutralization of extracellular BDNF abolished the IL-6 effect and the treatment with IL-6 and CHA (an agonist of A1R) modulated BDNF expression as well as pCREB and pTrkB levels.


Assuntos
Interleucina-6/farmacologia , Receptor A1 de Adenosina/fisiologia , Células Ganglionares da Retina/efeitos dos fármacos , Adenosina/farmacologia , Agonistas do Receptor A1 de Adenosina/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ratos , Ratos Endogâmicos , Receptor A1 de Adenosina/biossíntese , Células Ganglionares da Retina/metabolismo
13.
J Neurochem ; 123(2): 239-49, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22862679

RESUMO

Little is known about the mechanisms that regulate the expression of adenosine receptors during CNS development. We demonstrate here that retinas from chick embryos injected in ovo with selective adenosine receptor ligands show changes in A1 receptor expression after 48 h. Exposure to A1 agonist N6-cyclohexyladenosine (CHA) or antagonist 8-Cyclopentyl-1, 3-dipropylxanthine (DPCPX) reduced or increased, respectively, A1 receptor protein and [³H]DPCPX binding, but together, CHA+DPCPX had no effect. Interestingly, treatment with A(2A) agonist 3-[4-[2-[[6-amino-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]purin-2-yl]amino] ethyl]phenyl] propanoic acid (CGS21680) increased A1 receptor protein and [³H]DPCPX binding, and reduced A(2A) receptors. The A(2A) antagonists 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-trizolo[1,5-c] pyrimidine (SCH58261) and 4-(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazo-5-yl-amino]ethyl)phenol (ZM241385) had opposite effects on A1 receptor expression. Exposure to CGS21680 + CHA did not change A1 receptor levels, whereas CHA + ZM241385 or CGS21680 + DPCPX had no synergic effect. The blockade of adenosine transporter with S-(4-nitrobenzyl)-6-thioinosine (NBMPR) also reduced [³H]DPCPX binding, an effect blocked by DPCPX, but not enhanced by ZM241385. [³H]DPCPX binding kinetics showed that treatment with CHA reduced and CGS21680 increased the Bmax, but did not affect Kd values. CHA, DPCPX, CGS21680, and ZM241385 had no effect on A1 receptor mRNA. These data demonstrated an in vivo regulation of A1 receptor expression by endogenous adenosine or long-term treatment with A1 and A(2A) receptors modulators.


Assuntos
Adenosina/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Receptor A1 de Adenosina/biossíntese , Receptor A2A de Adenosina/fisiologia , Retina/embriologia , Retina/metabolismo , Agonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Embrião de Galinha , Retina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...