Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1710: 464230, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37826922

RESUMO

Liquid-phase microextraction (LPME) is a simple, low-cost, and eco-friendly technique that enables the detection of trace concentrations of organic contaminants in water samples. In this work, a novel customized microextraction device was developed for the LPME extraction and preconcentration of nine illicit drugs in surface water and influent and effluent wastewater samples, followed by analysis by GC-MS without derivatization. The customized device was semi-automated by coupling it with a peristaltic pump to perform the collection of the upper layer of the organic phase. The extraction parameters affecting the LPME efficiency were optimized. The optimized conditions were: 100 µL of a toluene/DCM/EtAc mixture as extractor solvent; 30min of extraction time under vortex agitation (500rpm) and a solution pH of 11.6. The limits of detection and quantification ranged from 10.5ng L-1 (ethylone) to 22.0ng L-1 (methylone), and from 34.9ng L-1 to 73.3ng L-1 for these same compounds, respectively. The enrichment factors ranged from 39.7 (MDMA) to 117 (cocaethylene) and the relative recoveries ranged from 80.4% (N-ethylpentylone) to 120% (cocaine and cocaine-d3). The method was applied to real surface water, effluent, and influent wastewater samples collected in Salvador City, Bahia, Brazil. Cocaine was the main drug detected and quantified in wastewater samples, and its concentration ranged from 312ng L-1 to 1,847ng L-1. Finally, the AGREE metrics were applied to verify the greenness of the proposed method, and an overall score of 0.56 was achieved, which was considered environmentally friendly.


Assuntos
Cocaína , Drogas Ilícitas , Microextração em Fase Líquida , Poluentes Químicos da Água , Águas Residuárias , Microextração em Fase Líquida/métodos , Drogas Ilícitas/análise , Cocaína/análise , Água/análise , Poluentes Químicos da Água/análise
2.
J Agric Food Chem ; 58(24): 12777-83, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21105653

RESUMO

Canola oil was heated continuously for 8 h at a typical frying temperature (180 °C) in the presence of various concentrations of the metal ions Fe(III), Cu(II), and Al(III) (9.2, 27.5, and 46.0 µg L(-1) of oil) to evaluate changes occurring in the amount of free fatty acids, expressed as acidity index, and in the formation rates of aldehydes. The aldehydes were collected and derivatized in silica cartridges functionalized with C18 and impregnated with an acid solution of 2,4-dinitrophenylhydrazine, after which they were eluted with acetonitrile and analyzed by LC-DAD-MS. Among the substances emitted, the following were identified and quantified: formaldehyde, acetaldehyde, acrolein, propanal, butanal, hexanal, (E)-2-heptenal, and octanal. During heating of the oil, the compounds presenting the highest mean formation rates were acrolein, hexanal, and acetaldehyde. In the study of the metal ions, the addition of ions to the samples generally led to a corresponding increase in the formation rates of the eight substances. The compounds showing the highest relative increases in formation rates were formaldehyde, acetaldehyde, propanal, and heptenal. In terms of catalytic effect, copper proved to be the most efficient in promoting increased formation rates, followed by iron and aluminum.


Assuntos
Ácidos Graxos Monoinsaturados/química , Ácidos Graxos não Esterificados/química , Metais/análise , Compostos Orgânicos/química , Óleos de Plantas/química , Aldeídos/química , Temperatura Alta , Cinética , Oxirredução , Óleo de Brassica napus , Fatores de Tempo
3.
Talanta ; 81(1-2): 346-54, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20188930

RESUMO

A method was developed for the simultaneous analysis of 14 pesticide residues (clofentezine, carbofuran, diazinon, methyl parathion, malathion, fenthion, thiabendazole, imazalil, bifenthrin, permethrin, prochloraz, pyraclostrobin, difenoconazole and azoxystrobin) in mango fruit, based on solid-phase micro extraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS). Different parameters of the method were evaluated, such as fiber type, extraction mode (direct immersion and headspace), temperature, extraction and desorption times, stirring velocities and ionic strength. The best results were obtained using polyacrylate fiber and direct immersion mode at 50 degrees C for 30 min, along with stirring at 250 rpm and desorption for 5 min at 280 degrees C. The method was validated using mango samples spiked with pesticides at concentration levels ranging from 33.3 to 333.3 microg kg(-1). The average recoveries (n=3) for the lowest concentration level ranged from 71.6 to 117.5%, with relative standard deviations between 3.1 and 12.3%, respectively. Detection and quantification limits ranged from 1.0 to 3.3 microg kg(-1) and from 3.33 to 33.33 microg kg(-1), respectively. The optimized method was then applied to 16 locally purchased mango samples, all of them containing the pesticides bifenthrin and azoxystrobin in concentrations of 18.3-57.4 and 12.7-55.8 microg kg(-1), respectively, although these values were below the MRL established by Brazilian legislation. The method proved to be selective, sensitive, and with good precision and recovery rates, presenting LOQ below the MRL admitted by Brazilian legislation.


Assuntos
Análise de Alimentos/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Mangifera/química , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/isolamento & purificação , Microextração em Fase Sólida/métodos , Frutas/química , Concentração Osmolar , Temperatura , Fatores de Tempo
4.
J Agric Food Chem ; 56(9): 3129-35, 2008 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-18422332

RESUMO

The aim of this work was to compare the emission rates of selected carbonyl compounds (CC) produced by palm and soybean oils when heated at 180 degrees C in the presence of air, through different time intervals and at different surface-to-volume ratios ( S/ V), in continuous and intermittent processes. The CC were collected and derivatized onto silica C18 cartridges impregnated with an acid 2,4-dinitrophenylhidrazine solution, followed by extraction with acetonitrile and analysis by HPLC-UV and, in some cases, HPLC-MS with electrospray ionization. Among the CC quantified, namely, acetaldehyde, acrolein, propanal, butanal, hexanal, 2-heptenal, and 2-octenal, acrolein was the main emission in both oils and all S/ V ratios, followed by hexanal and 2-heptenal. The soybean oil has presented greater emission rates of acrolein than palm oil. When different S/ V ratios used during the heating process of the oil were compared, the emission rates, in general, were directly related to them, although saturated and nonsaturated CC have had different behaviors toward oxidation reactions. During intermittent heating, there was a trend of increasing emission rates of saturated aldehydes, whereas the opposite was observed with unsaturated aldehydes, probably due to the reactivity of the double bond present in these compounds.


Assuntos
Aldeídos/química , Temperatura Alta , Óleos de Plantas/química , Óleo de Soja/química , Acroleína/química , Fenômenos Químicos , Físico-Química , Cromatografia Líquida de Alta Pressão , Oxirredução , Óleo de Palmeira , Espectrometria de Massas por Ionização por Electrospray , Fatores de Tempo , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...