Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36236402

RESUMO

Since the beginning of the COVID-19 pandemic, many works have been published proposing solutions to the problems that arose in this scenario. In this vein, one of the topics that attracted the most attention is the development of computer-based strategies to detect COVID-19 from thoracic medical imaging, such as chest X-ray (CXR) and computerized tomography scan (CT scan). By searching for works already published on this theme, we can easily find thousands of them. This is partly explained by the fact that the most severe worldwide pandemic emerged amid the technological advances recently achieved, and also considering the technical facilities to deal with the large amount of data produced in this context. Even though several of these works describe important advances, we cannot overlook the fact that others only use well-known methods and techniques without a more relevant and critical contribution. Hence, differentiating the works with the most relevant contributions is not a trivial task. The number of citations obtained by a paper is probably the most straightforward and intuitive way to verify its impact on the research community. Aiming to help researchers in this scenario, we present a review of the top-100 most cited papers in this field of investigation according to the Google Scholar search engine. We evaluate the distribution of the top-100 papers taking into account some important aspects, such as the type of medical imaging explored, learning settings, segmentation strategy, explainable artificial intelligence (XAI), and finally, the dataset and code availability.


Assuntos
COVID-19 , Inteligência Artificial , COVID-19/diagnóstico por imagem , Humanos , Pandemias , SARS-CoV-2 , Tomografia Computadorizada por Raios X/métodos , Raios X
2.
Sensors (Basel) ; 21(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34770423

RESUMO

COVID-19 frequently provokes pneumonia, which can be diagnosed using imaging exams. Chest X-ray (CXR) is often useful because it is cheap, fast, widespread, and uses less radiation. Here, we demonstrate the impact of lung segmentation in COVID-19 identification using CXR images and evaluate which contents of the image influenced the most. Semantic segmentation was performed using a U-Net CNN architecture, and the classification using three CNN architectures (VGG, ResNet, and Inception). Explainable Artificial Intelligence techniques were employed to estimate the impact of segmentation. A three-classes database was composed: lung opacity (pneumonia), COVID-19, and normal. We assessed the impact of creating a CXR image database from different sources, and the COVID-19 generalization from one source to another. The segmentation achieved a Jaccard distance of 0.034 and a Dice coefficient of 0.982. The classification using segmented images achieved an F1-Score of 0.88 for the multi-class setup, and 0.83 for COVID-19 identification. In the cross-dataset scenario, we obtained an F1-Score of 0.74 and an area under the ROC curve of 0.9 for COVID-19 identification using segmented images. Experiments support the conclusion that even after segmentation, there is a strong bias introduced by underlying factors from different sources.


Assuntos
COVID-19 , Aprendizado Profundo , Inteligência Artificial , Humanos , Pulmão/diagnóstico por imagem , SARS-CoV-2 , Raios X
3.
Neural Comput Appl ; 33(22): 15373-15395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177126

RESUMO

Studies recently accomplished on the Enteric Nervous System have shown that chronic degenerative diseases affect the Enteric Glial Cells (EGC) and, thus, the development of recognition methods able to identify whether or not the EGC are affected by these type of diseases may be helpful in its diagnoses. In this work, we propose the use of pattern recognition and machine learning techniques to evaluate if a given animal EGC image was obtained from a healthy individual or one affect by a chronic degenerative disease. In the proposed approach, we have performed the classification task with handcrafted features and deep learning-based techniques, also known as non-handcrafted features. The handcrafted features were obtained from the textural content of the ECG images using texture descriptors, such as the Local Binary Pattern (LBP). Moreover, the representation learning techniques employed in the approach are based on different Convolutional Neural Network (CNN) architectures, such as AlexNet and VGG16, with and without transfer learning. The complementarity between the handcrafted and non-handcrafted features was also evaluated with late fusion techniques. The datasets of EGC images used in the experiments, which are also contributions of this paper, are composed of three different chronic degenerative diseases: Cancer, Diabetes Mellitus, and Rheumatoid Arthritis. The experimental results, supported by statistical analysis, show that the proposed approach can distinguish healthy cells from the sick ones with a recognition rate of 89.30% (Rheumatoid Arthritis), 98.45% (Cancer), and 95.13% (Diabetes Mellitus), being achieved by combining classifiers obtained on both feature scenarios.

4.
Comput Methods Programs Biomed ; 194: 105532, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32446037

RESUMO

BACKGROUND AND OBJECTIVE: The COVID-19 can cause severe pneumonia and is estimated to have a high impact on the healthcare system. Early diagnosis is crucial for correct treatment in order to possibly reduce the stress in the healthcare system. The standard image diagnosis tests for pneumonia are chest X-ray (CXR) and computed tomography (CT) scan. Although CT scan is the gold standard, CXR are still useful because it is cheaper, faster and more widespread. This study aims to identify pneumonia caused by COVID-19 from other types and also healthy lungs using only CXR images. METHODS: In order to achieve the objectives, we have proposed a classification schema considering the following perspectives: i) a multi-class classification; ii) hierarchical classification, since pneumonia can be structured as a hierarchy. Given the natural data imbalance in this domain, we also proposed the use of resampling algorithms in the schema in order to re-balance the classes distribution. We observed that, texture is one of the main visual attributes of CXR images, our classification schema extract features using some well-known texture descriptors and also using a pre-trained CNN model. We also explored early and late fusion techniques in the schema in order to leverage the strength of multiple texture descriptors and base classifiers at once. To evaluate the approach, we composed a database, named RYDLS-20, containing CXR images of pneumonia caused by different pathogens as well as CXR images of healthy lungs. The classes distribution follows a real-world scenario in which some pathogens are more common than others. RESULTS: The proposed approach tested in RYDLS-20 achieved a macro-avg F1-Score of 0.65 using a multi-class approach and a F1-Score of 0.89 for the COVID-19 identification in the hierarchical classification scenario. CONCLUSIONS: As far as we know, the top identification rate obtained in this paper is the best nominal rate obtained for COVID-19 identification in an unbalanced environment with more than three classes. We must also highlight the novel proposed hierarchical classification approach for this task, which considers the types of pneumonia caused by the different pathogens and lead us to the best COVID-19 recognition rate obtained here.


Assuntos
Infecções por Coronavirus/diagnóstico por imagem , Pneumonia Viral/diagnóstico por imagem , Radiografia Torácica/métodos , Algoritmos , Betacoronavirus , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Bases de Dados Factuais , Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Pandemias , SARS-CoV-2 , Software , Tomografia Computadorizada por Raios X , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...