Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Mem Inst Oswaldo Cruz ; 119: e240057, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38958341

RESUMO

Chagas disease is a tropical neglected disease that affects millions of people worldwide, still demanding a more effective and safer therapy, especially in its chronic phase which lacks a treatment that promotes substantial parasitological cure. The technical note of Romanha and collaborators published in 2010 aimed establish a guideline with the set of minimum criteria and decision gates for the development of new agents against Trypanosoma cruzi with the focus on developing new antichagasic drugs. In this sense, the present review aims to update this technical note, bringing the state of the art and new advances on this topic in recent years.


Assuntos
Doença de Chagas , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Tripanossomicidas , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Animais , Trypanosoma cruzi/efeitos dos fármacos , Humanos , Desenvolvimento de Medicamentos
2.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931469

RESUMO

Escherichia coli has been associated with the induction of colorectal cancer (CRC). Thus, combined therapy incorporating usnic acid (UA) and antibiotics such as ceftazidime (CAZ), co-encapsulated in liposomes, could be an alternative. Coating the liposomes with chitosan (Chi) could facilitate the oral administration of this nanocarrier. Liposomes were prepared using the lipid film hydration method, followed by sonication and chitosan coating via the drip technique. Characterization included particle size, polydispersity index, zeta potential, pH, encapsulation efficiency, and physicochemical analyses. The minimum inhibitory concentration and minimum bactericidal concentration were determined against E. coli ATCC 25922, NCTC 13846, and H10407 using the microdilution method. Antibiofilm assays were conducted using the crystal violet method. The liposomes exhibited sizes ranging from 116.5 ± 5.3 to 240.3 ± 3.5 nm and zeta potentials between +16.4 ± 0.6 and +28 ± 0.8 mV. The encapsulation efficiencies were 51.5 ± 0.2% for CAZ and 99.94 ± 0.1% for UA. Lipo-CAZ-Chi and Lipo-UA-Chi exhibited antibacterial activity, inhibited biofilm formation, and preformed biofilms of E. coli. The Lipo-CAZ-UA-Chi and Lipo-CAZ-Chi + Lipo-UA-Chi formulations showed enhanced activities, potentially due to co-encapsulation or combination effects. These findings suggest potential for in vivo oral administration in future antibacterial and antibiofilm therapies against CRC-inducing bacteria.

3.
Exp Parasitol ; 261: 108749, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593864

RESUMO

Trypanosoma cruzi (T. cruzi) causes Chagas, which is a neglected tropical disease (NTD). WHO estimates that 6 to 7 million people are infected worldwide. Current treatment is done with benznidazole (BZN), which is very toxic and effective only in the acute phase of the disease. In this work, we designed, synthesized, and characterized thirteen new phenoxyhydrazine-thiazole compounds and applied molecular docking and in vitro methods to investigate cell cytotoxicity, trypanocide activity, nitric oxide (NO) production, cell death, and immunomodulation. We observed a higher predicted affinity of the compounds for the squalene synthase and 14-alpha demethylase enzymes of T. cruzi. Moreover, the compounds displayed a higher predicted affinity for human TLR2 and TLR4, were mildly toxic in vitro for most mammalian cell types tested, and LIZ531 (IC50 2.8 µM) was highly toxic for epimastigotes, LIZ311 (IC50 8.6 µM) for trypomastigotes, and LIZ331 (IC50 1.9 µM) for amastigotes. We observed that LIZ311 (IC50 2.5 µM), LIZ431 (IC50 4.1 µM) and LIZ531 (IC50 5 µM) induced 200 µg/mL of NO and JM14 induced NO production in three different concentrations tested. The compound LIZ331 induced the production of TNF and IL-6. LIZ311 induced the secretion of TNF, IFNγ, IL-2, IL-4, IL-10, and IL-17, cell death by apoptosis, decreased acidic compartment formation, and induced changes in the mitochondrial membrane potential. Taken together, LIZ311 is a promising anti-T. cruzi compound is not toxic to mammalian cells and has increased antiparasitic activity and immunomodulatory properties.


Assuntos
Doença de Chagas , Simulação de Acoplamento Molecular , Óxido Nítrico , Tiazóis , Tripanossomicidas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Tiazóis/farmacologia , Tiazóis/química , Doença de Chagas/tratamento farmacológico , Doença de Chagas/imunologia , Humanos , Animais , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico/biossíntese , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Hidrazinas/farmacologia , Hidrazinas/química , Citocinas/metabolismo , Camundongos Endogâmicos BALB C
4.
Trop Med Infect Dis ; 8(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37999614

RESUMO

Asymptomatic Leishmania infantum, when associated with HIV, can become severe and potentially fatal. In this co-infection, the worst prognosis may be influenced by the host's immunological aspects, which are crucial in determining susceptibility. Chemokines play an important role in this process by influencing the cellular composition at affected sites and impacting the disease's outcome. Therefore, the aim of this study was to evaluate proinflammatory chemokines in HIV patients with the asymptomatic L. infantum infection. In this cross-sectional study, the levels of CCL2, CCL5, CXCL8, MIG, and IP-10 were measured in 160 serum samples from co-infected patients (n = 53), patients with HIV (n = 90), and negative controls (n = 17). Quantification was determined by flow cytometry. The obtained data were statistically analyzed using the Kruskal-Wallis test, followed by the Dunn's post-test and the Spearman's correlation coefficient. Significance was set at p < 0.05. The chemokines CCL2, CCL5, MIG, and IP-10 exhibited higher levels in the HIV group compared to co-infection. However, the elevated levels of all these chemokines and their increased connectivity in co-infected patients appear to be important in identifying proinflammatory immune responses associated with the asymptomatic condition. Furthermore, a weak negative correlation was observed between higher levels of CXCL8 and lower viral loads in co-infected patients.

5.
Int J Biol Macromol ; 250: 126225, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558029

RESUMO

In this context, the objective of this work was to isolate an alkaline lignin from the leaves of C. ferrea, in addition to investigating different biological activities and its use in the production of releasing tablets in vitro. Initially, the analysis of the composition of the leaves was performed, the contents were: cellulose (33.09 ± 0.3 %), hemicellulose (25.13 ± 0.1 %), lignin (18.29 ± 0.1 %), extractives (17.28 ± 1.0 %) and ash (6.20 ± 0.1 %). The leaves were fractionated to obtain alkaline lignin. The yield of obtaining lignin was 80.12 ± 0.1 %. The obtained lignin was characterized by the techniques: elemental analysis, FTIR, UV/Vis, 2D-NMR, GPC, TGA/DTG, DSC and PY-GC/MS. The results showed that the lignin obtained is of the GSH type, of low molecular weight and thermally stable. The in vitro antioxidant activity was evaluated by different assays promoting results only for DPPH (559.9 ± 0.8 µg/mL) and ABTS (484.1 ± 0.1 µg/mL) being able to promote low antioxidant activity. In addition, it showed low cytotoxicity in normal mammalian cells and promising antitumor and trypanocidal activity. Regarding antimicrobial activity, it was able to inhibit the growth of a strain of Staphylococcus aureus resistant to methicillin, presenting MIC values equal to the standard antibiotic oxacillin. It was also able to inhibit a strain of Candida albicans HAM13 sensitive to fluconazole. In addition, lignin promoted a synergistic effect by promoting a decrease in MIC against these two strains evaluated. Finally, lignin proved to be an excipient with potential for controlled release of antimicrobials.

6.
Chem Biol Drug Des ; 102(4): 843-856, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37455325

RESUMO

Chagas' disease affects approximately eight million people throughout the world, especially the poorest individuals. The protozoan that causes this disease-Trypanosoma cruzi-has the enzyme cruzipain, which is the main therapeutic target. As no available medications have satisfactory effectiveness and safety, it is of fundamental importance to design and synthesize novel analogues that are more active and selective. In the present study, molecular docking and the in silico prediction of ADMET properties were used as strategies to optimize the trypanocidal activity of the pyrimidine compound ZN3F based on interactions with the target site in cruzipain. From the computational results, eight 4-amino-5-carbonitrile-pyrimidine analogues were proposed, synthesized (5a-f and 7g-h) and, tested in vitro on the trypomastigote form of the Tulahuen strain of T. cruzi. The in silico study showed that the designed analogues bond favorably to important amino acid residues of the active site in cruzipain. An in vitro evaluation of cytotoxicity was performed on L929 mammal cell lines. All derivatives inhibited the Tulahuen strain of T. cruzi and also exhibited lower toxicity to L929 cells. The 5e product, in particular, proved to be a potent, selective (IC50 = 2.79 ± 0.00 µM, selectivity index = 31.3) inhibitor of T. cruzi. The present results indicated the effectiveness of drugs based on the structure of the receptor, revealing the potential trypanocidal of pyrimidines. This study also provides information on molecular aspects for the inhibition of cruzipain.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Animais , Simulação de Acoplamento Molecular , Doença de Chagas/tratamento farmacológico , Domínio Catalítico , Tripanossomicidas/química , Mamíferos
7.
Eur J Med Chem ; 258: 115579, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37399709

RESUMO

Tuberculosis remains a major public health problem and one of the top ten causes of death worldwide. The alarming increase in multidrug-resistant and extensively resistant variants (MDR, pre-XDR, and XDR) makes the disease more difficult to treat and control. New drugs that act against MDR/XDR strains are needed for programs to contain this major epidemic. The present study aimed to evaluate new compounds related to dihydro-sphingosine and ethambutol against sensitive and pre-XDR Mycobacterium strains, as well as to characterize the pharmacological activity through in vitro and in silico approaches in mmpL3 protein. Of the 48 compounds analyzed, 11 demonstrated good to moderate activity on sensitive and MDR Mycobacterium tuberculosis (Mtb), with a Minimum Inhibitory Concentration (MIC) ranging from 1.5 to 8 µM. They presented 2 to 14 times greater potency of activity when compared to ethambutol in pre-XDR strain, and demonstrated a selectivity index varying between 2.21 and 82.17. The substance 12b when combined with rifampicin, showed a synergistic effect (FICI = 0.5) on sensitive and MDR Mtb. It has also been shown to have a concentration-dependent intracellular bactericidal effect, and a time-dependent bactericidal effect in M. smegmatis and pre-XDR M. tuberculosis. The binding mode of the compounds in its cavity was identified through molecular docking and using a predicted structural model of mmpL3. Finally, we observed by transmission electron microscopy the induction of damage to the cell wall integrity of M. tuberculosis treated with the substance 12b. With these findings, we demonstrate the potential of a 2-aminoalkanol derivative to be a prototype substance and candidate for further optimization of molecular structure and anti-tubercular activity in preclinical studies.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Etambutol/farmacologia , Antituberculosos/química , Esfingosina/farmacologia , Simulação de Acoplamento Molecular , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
8.
Eur J Med Chem ; 255: 115400, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37130472

RESUMO

Malaria can be caused by several Plasmodium species and the development of an effective vaccine is challenging. Currently, the most effective tool to control the disease is the administration of specific chemotherapy; however, resistance to the frontline antimalarials is one of the major problems in malaria control and thus the development of new drugs becomes urgent. The study presented here sought to evaluate the antimalarial activities of compounds derived from 2-amino-1,4-naphthoquinones containing 1,2,3-triazole using in vivo and in vitro models. 1H-1,2,3-Triazole 2-amino-1,4-naphthoquinone derivatives were synthesized and evaluated for antimalarial activity in vitro, using P. falciparum W2 chloroquine (CQ) resistant strain and in vivo using the murine-P. berghei ANKA strain. Acute toxicity was determined as established by the OECD (2001). Cytotoxicity was evaluated against HepG2 and Vero mammalian cell lines. Transmission electron microscopy of the Plasmodium falciparum trophozoite (early and late stages) was used to evaluate the action of compounds derived at ultra-structural level. The compounds displayed low cytotoxicity CC50 > 100 µM, neither did they cause hemolysis at the tested doses and nor the signs of toxicity in the in vivo acute toxicity test. Among the five compounds tested, one showed IC50 values in submicromolar range of 0.8 µM. Compounds 7, 8 and 11 showed IC50 values < 5 µM, and selectivity index (SI) ranging from 6.8 to 343 for HepG2, and from 13.7 to 494.8 for Vero cells. Compounds 8 and 11 were partially active against P. berghei induced parasitemia in vivo. Analysis of the ultrastructural changes associated with the treatment of these two compounds, showed trophozoites with completely degraded cytoplasm, loss of membrane integrity, organelles in the decomposition stage and possible food vacuole deterioration. Our results indicated that compounds 8 and 11 may be considered hit molecules for antimalarial drug discovery platform and deserve further optimization studies.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Naftoquinonas , Chlorocebus aethiops , Humanos , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/química , Naftoquinonas/química , Células Vero , Triazóis/farmacologia , Triazóis/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Plasmodium berghei , Mamíferos
9.
Eur J Med Chem ; 254: 115310, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37062170

RESUMO

The present work reports the synthesis of a novel series of pyridine-thiazolidinones with anti-Trypanosoma cruzi and leishmanicidal activities (compounds 10-27), derived from 2 or 4-pyridine thiosemicarbazones (1-9). The in vitro assays were performed with Trypanosoma cruzi trypomastigotes and amastigotes, as well as with Leishmania amazonensis promastigotes and amastigotes. The cytotoxicity profile was evaluated using the cell line RAW 264.7. From the 18 pyridine-thiazolidinones, 5 were able to inhibit trypomastigotes. Overall, all compounds inhibited amastigotes, highlighting compounds 15 (0.60 µM), 18 (0.64 µM), 17 (0.81 µM), and 27 (0.89 µM). Compounds 15 and 18 were able to induce parasite cell death through necrosis induction. Analysis by scanning electron microscopy showed that T. cruzi trypomastigotes treated with compounds 15 and 18 induced morphological changes such as shortening, retraction and curvature of the parasite body and leakage of internal content. Regarding the antiparasitic evaluation against Leishmania amazonensis, only compound 27 had a higher selectivity compared to Miltefosine against the amastigote form (IC50 = 5.70 µM). Our results showed that compound 27 presented an antiparasitic activity for both Trypanosoma cruzi and Leishmania amazonensis. After in silico evaluation, it was suggested that the new pyridine-thiazolidinones had an appropriate drug-likeness profile. Our results pointed out a new chemical frame with an anti-Trypanosomatidae profile. The pyridine-thiazolidinones presented here for the first time could be used as a starting point for the development of new antiparasitic agents.


Assuntos
Doença de Chagas , Leishmania mexicana , Tripanossomicidas , Trypanosoma cruzi , Trypanosomatina , Humanos , Relação Estrutura-Atividade , Doença de Chagas/tratamento farmacológico , Antiparasitários/farmacologia , Tripanossomicidas/química
10.
Exp Parasitol ; 248: 108498, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36907541

RESUMO

In this work, 13 thiosemicarbazones (1a - m) and 16 thiazoles (2a - p) were obtained, which were properly characterized by spectroscopic and spectrometric techniques. The pharmacokinetic properties obtained in silico revealed that the derivatives are in accordance with the parameters established by lipinski and veber, showing that such compounds have good bioavailability or permeability when administered orally. In assays of antioxidant activity, thiosemicarbazones showed moderate to high antioxidant potential when compared to thiazoles. In addition, they were able to interact with albumin and DNA. Screening assays to assess the toxicity of compounds to mammalian cells revealed that thiosemicarbazones were less toxic when compared to thiazoles. In relation to in vitro antiparasitic activity, thiosemicarbazones and thiazoles showed cytotoxic potential against the parasites Leishmania amazonensis and Trypanosoma cruzi. Among the compounds, 1b, 1j and 2l stood out, showing inhibition potential for the amastigote forms of the two parasites. As for the in vitro antimalarial activity, thiosemicarbazones did not inhibit Plasmodium falciparum growth. In contrast, thiazoles promoted growth inhibition. This study shows in a preliminary way that the synthesized compounds have antiparasitic potential in vitro.


Assuntos
Tiossemicarbazonas , Trypanosoma cruzi , Animais , Antioxidantes/farmacologia , Antiparasitários/toxicidade , Relação Estrutura-Atividade , Tiazóis/farmacologia , Tiazóis/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Mamíferos
11.
Vaccines (Basel) ; 11(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36680003

RESUMO

Cutaneous Leishmaniasis (CL) is a Neglected Tropical Disease characterized by skin ulcers caused by Leishmania spp. protozoans and there is no safe and effective vaccine to reduce its negative consequences. In a previous work by our group, we identified T cell epitopes of Leishmania (Viannia) braziliensis which stimulated patients' T cells in vitro. In the present work, the peptides were tested as two pools for their ability to rescue memory T cells during natural infection by Leishmania. We analyzed the frequency of central memory (TCM, CD45RA-CD62L+) and effector memory (TEM, CD45RA + CD62L-) cells during active CL and post-treatment. In parallel, we investigated cell proliferation levels and the cytokines produced after stimulation. Interestingly, we observed higher frequencies (%) in CD4+ TEM during CL, and CD8+ TEM and CD8+ TCM during CL and post-treatment. Cell proliferation was increased, and a significant difference in expression was observed on T-bet and RORγT. Besides that, IFN-γ, IL-2, and IL-10 were detected in patient samples. Collectively, this dataset suggests that during CL there is an increase in the frequency of TCM and TEM, especially in the CD8 compartment. These results indicate a potentially immunogenic profile of the peptide pools, which can support the development of anti-Leishmania formulations.

12.
Parasite Immunol ; 45(3): e12966, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36601688

RESUMO

The aim of this work was to define the population of regulatory T cells (Tregs) which are circulating in the blood of Leishmania infected individuals clinically displaying a lesion (active disease-AD) and sub-clinical (SC) ones. We have individually collected blood samples, processed the PBMC and stained with fluorochrome-conjugated antibodies against CD3, CD4, Foxp3, CD25, CTLA-4, Ki-67, CCR4, CCR5, and CCR7. Cells were analyzed by flow cytometry. Our results suggest that CD25 and CTLA-4 are upregulated in Tregs of AD patients when compared to SC and uninfected (UN) controls. Moreover, Tregs proliferate upon infection based on Ki-67 nuclear antigen staining. Finally, we have observed that these Tregs of SC and AD patients upregulate CCR4, but not CCR5 and CCR7. There is an increase in the number of circulating Tregs in the blood of Leishmania infected individuals. These cells are potentially more suppressive based on the increased upregulation of CD25 and CTLA-4 during clinical infection (AD) when compared to SC infection. Tregs of both SC and AD cohorts are proliferating and express CCR4, which potentially guide them to the skin, but do not upregulate CCR5 and CCR7.


Assuntos
Leishmania , Leishmaniose Cutânea , Humanos , Linfócitos T Reguladores , Antígeno CTLA-4 , Leucócitos Mononucleares , Receptores CCR7 , Antígeno Ki-67 , Fatores de Transcrição Forkhead
13.
Clin Exp Med ; 23(4): 1225-1233, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36315310

RESUMO

COVID-19 is an infectious respiratory disease caused by SARS-CoV-2. Pentraxin 3 (PTX3) is involved in the activation and regulation of the complement system, demonstrating an important role in the pathogenesis of COVID-19. The aim was to evaluate the association of single nucleotide polymorphisms in PTX3 and its plasma levels with the severity of COVID-19. This is a retrospective cohort study, carried out between August 2020 and July 2021, including patients with confirmed COVID-19 hospitalized in 2 hospitals in the Northeast Region of Brazil. Polymorphisms in PTX3 (rs1840680 and rs2305619) were determined by real-time PCR. PTX3 plasma levels were measured by ELISA. Serum levels of interleukin (IL)-6, IL-8, and IL-10 were determined by flow cytometry. A multivariate logistic regression model was used to identify parameters independently associated with COVID-19 severity. P values < 0.05 were considered significant. The study included 496 patients, classified as moderate (n = 267) and severe (n = 229) cases. The PTX3 AA genotype (rs1840680) was independently associated with protection against severe COVID-19 (P = 0.037; odds ratio = 0.555). PTX3 plasma levels were significantly associated with COVID-19 severity and mortality (P < 0.05). PTX3 levels were significantly correlated with IL-6, IL-8, IL-10, C-reactive protein, total leukocytes, neutrophil-to-lymphocyte ratio, urea, creatinine, ferritin, length of hospital stay, and higher respiratory rate (P < 0.05). Our results revealed a protective effect of the PTX3 AA genotype (rs1840680) on the development of severe forms of COVID-19. Additionally, PTX3 plasma levels were associated with the severity of COVID-19. The results of this study provide evidence of an important role of PTX3 in the immunopathology of COVID-19.


Assuntos
Proteína C-Reativa , COVID-19 , Componente Amiloide P Sérico , Humanos , Biomarcadores , Proteína C-Reativa/genética , COVID-19/genética , Interleucina-10 , Interleucina-8 , Estudos Retrospectivos , SARS-CoV-2 , Componente Amiloide P Sérico/genética
15.
J Inorg Biochem ; 234: 111906, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35759891

RESUMO

In this work, group 10 transition metal complexes bearing dppe [1,2-bis(diphenylphosphino)ethane] and acylthiourea ligands were evaluated for their cytotoxic and antiparasitic activities. Six new complexes with a general formula [M(Ln)(dppe)]BF4 [where M = NiII, PdII or PtII; Ln = N, N'-dimethyl-N-benzoyl thiourea (L1) or N, N'-dimethyl-N-tiofenyl thiourea (L2) were synthesized and characterized by infrared, NMR (31P{1H}, 1H and 13C{1H}) spectroscopies, elemental analysis and molar conductivity. The structures of the complexes were confirmed by X-ray diffraction technique. The biological activity of the complexes was evaluated on breast cancer cells (MDA-MB-231 and MCF-7) and causative agents of chagas disease and leishmaniasis. The complexes presented higher cytotoxicity for breast cancer cell lines compared to non-tumor cells. Nickel complexes stood out when evaluated against the triple-negative breast cancer line (MDA-MB-231), presenting considerably lower IC50 values (about 10 to 22×), when compared to palladium and platinum complexes, and the cisplatin drug. When evaluated on the triple-negative line (MDA-MB-231), the complexes [Ni(L2)(dppe)]BF4(2), [Pd(L2)(dppe)]BF4(4) and [Pt(L2)(dppe)]BF4(6) were able to induce cell morphological changes, influence on the cell colony formation and the size of the cells. The complexes inhibit cell migration and cause changes to the cell cytoskeleton and nuclear arrangement. In the same cell line, the compounds caused cell arrest in the Sub-G1 phase of the cell cycle. The compounds were also tested against the Trypanosom Cruzi (T. cruzi) and Leishmania sp. parasites, which cause Chagas and leishmaniasis disease, respectively. The compounds showed good anti-parasitic activity, mainly for T. cruzi, with lower IC50 values, when compared to the commercial drug, benznidazole. The compounds interact with CT-DNA, indicating that interaction occurs by the minor groove of the biomolecule.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Antineoplásicos/química , Antiparasitários/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/química , Feminino , Humanos , Ligantes , Tioureia/farmacologia
16.
PLoS Negl Trop Dis ; 16(6): e0010542, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35714136

RESUMO

BACKGROUND: Visceral leishmaniasis (VL) remains an important infectious disease worldwide. VL-HIV coinfected individuals can present with atypical clinical forms of VL and have a high risk of VL relapse. Some cytokines have been described as potential markers to diagnose active VL and to predict the severity of the cases. However, few studies have included VL-HIV coinfected patients. We aimed to characterize the levels of several cytokines among VL-HIV coinfected individuals living in a VL-endemic area in Northeast Brazil. METHODS: This was a retrospective, cross-sectional study, aiming to estimate the levels of various cytokines in symptomatic and asymptomatic VL-HIV coinfected individuals. There were 134 study participants (35 symptomatic VL-HIV, 75 asymptomatic VL-HIV, and 24 healthy controls), all ≥ 18 years-old. Serum cytokine levels (interferon-γ, tumor necrosis factor, and interleukins 2, 4, 6, 10, and 17A) were quantified using the Becton Dickinson-BD's Cytometric Bead Array (CBA) system. RESULTS: The population mainly consisted of men (64.9%), with a median age of 35 (27-41) years. Asymptomatic individuals were younger (p = 0.013), with more years of education (p < 0.001), and were more often on antiretroviral therapy (p < 0.001) than those in the symptomatic group. Hemoglobin levels (p < 0.001), lymphocytes (p < 0.001) and CD4 count (p < 0.001) were lower in symptomatic individuals, while HIV viral loads were higher (p < 0.001). In the symptomatic VL-HIV coinfected group, we observed increased serum levels of IL-17A, IL-6, and IL-10 compared to asymptomatic patients and the healthy controls. There were no differences in the levels of all cytokines between asymptomatic VL-HIV coinfected individuals and the healthy controls. CONCLUSIONS: Higher serum levels of IL-17A, IL-6, and IL-10 cytokines were observed in symptomatic coinfected individuals but not in asymptomatically infected individuals. More studies among HIV-positive persons are needed to better understand the role of serum cytokines for prognosis, to define cure and predict VL relapses in VL-HIV coinfected individuals.


Assuntos
Coinfecção , Infecções por HIV , Leishmania , Leishmaniose Visceral , Adolescente , Adulto , Brasil/epidemiologia , Estudos Transversais , Citocinas , Infecções por HIV/epidemiologia , Humanos , Interleucina-10 , Interleucina-17 , Interleucina-6 , Leishmaniose Visceral/tratamento farmacológico , Masculino , Estudos Retrospectivos
18.
Front Cell Infect Microbiol ; 12: 826039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265535

RESUMO

Visceral leishmaniasis caused by Leishmania (Leishmania) infantum in Latin America progress with hepatosplenomegaly, pancytopenia, hypergammaglobulinemia, and weight loss and maybe lethal mainly in untreated cases. miRNAs are important regulators of immune and inflammatory gene expression, but their mechanisms of action and their relationship to pathogenesis in leishmaniasis are not well understood. In the present study, we sought to quantify changes in miRNAs associated with immune and inflammatory pathways using the L. (L.) infantum promastigote infected- human monocytic THP-1 cell model and plasma from patients with visceral leishmaniasis. We identified differentially expressed miRNAs in infected THP-1 cells compared with non-infected cells using qPCR arrays. These miRNAs were submitted to in silico analysis, revealing targets within functional pathways associated with TGF-ß, chemokines, glucose metabolism, inflammation, apoptosis, and cell signaling. In parallel, we identified differentially expressed miRNAs in active visceral leishmaniasis patient plasma compared with endemic healthy controls. In silico analysis of these data indicated different predicted targets within the TGF-ß, TLR4, IGF-I, chemokine, and HIF1α pathways. Only a small number of miRNAs were commonly identified in these two datasets, notably with miR-548d-3p being up-regulated in both conditions. To evaluate the potential biological role of miR-548d-3p, we transiently transfected a miR-548d-3p inhibitor into L. (L.) infantum infected-THP-1 cells, finding that inhibition of miR-548d-3p enhanced parasite growth, likely mediated through reduced levels of MCP-1/CCL2 and nitric oxide production. Further work will be required to determine how miR-548d-3p plays a role in vivo and whether it serves as a potential biomarker of progressive leishmaniasis.


Assuntos
Leishmania infantum , Leishmaniose Visceral , MicroRNAs , Parasitos , Animais , Humanos , Leishmania infantum/genética , Macrófagos , MicroRNAs/genética , Parasitos/genética
19.
Cytokine Growth Factor Rev ; 62: 15-22, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34696979

RESUMO

Chagas disease is an important neglected disease that affects 6-7 million people worldwide. The disease has two phases: acute and chronic, in which there are different clinical symptoms. Controlling the infection depends on innate and acquired immune responses, which are activated during the initial infection and are critical for host survival. Furthermore, the immune system plays an important role in the therapeutic success. Here we summarize the importance of the immune system cytokines in the pathology outcome, as well as in the treatment.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Imunidade Adaptativa , Citocinas , Humanos
20.
Front Cell Infect Microbiol ; 11: 687647, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178725

RESUMO

American Tegumentary Leishmaniasis (ATL) is an endemic disease in Latin America, mainly caused in Brazil by Leishmania (Viannia) braziliensis. Clinical manifestations vary from mild, localized cutaneous leishmaniasis (CL) to aggressive mucosal disease. The host immune response strongly determines the outcome of infection and pattern of disease. However, the pathogenesis of ATL is not well understood, and host microRNAs (miRNAs) may have a role in this context. In the present study, miRNAs were quantified using qPCR arrays in human monocytic THP-1 cells infected in vitro with L. (V.) braziliensis promastigotes and in plasma from patients with ATL, focusing on inflammatory response-specific miRNAs. Patients with active or self-healed cutaneous leishmaniasis patients, with confirmed parasitological or immunological diagnosis, were compared with healthy controls. Computational target prediction of significantly-altered miRNAs from in vitro L. (V.) braziliensis-infected THP-1 cells revealed predicted targets involved in diverse pathways, including chemokine signaling, inflammatory, cellular proliferation, and tissue repair processes. In plasma, we observed distinct miRNA expression in patients with self-healed and active lesions compared with healthy controls. Some miRNAs dysregulated during THP-1 in vitro infection were also found in plasma from self-healed patients, including miR-548d-3p, which was upregulated in infected THP-1 cells and in plasma from self-healed patients. As miR-548d-3p was predicted to target the chemokine pathway and inflammation is a central to the pathogenesis of ATL, we evaluated the effect of transient transfection of a miR-548d-3p inhibitor on L. (V.) braziliensis infected-THP-1 cells. Inhibition of miR-548d-3p reduced parasite growth early after infection and increased production of MCP1/CCL2, RANTES/CCL5, and IP10/CXCL10. In plasma of self-healed patients, MCP1/CCL2, RANTES/CCL5, and IL-8/CXCL8 concentrations were significantly decreased and MIG/CXCL9 and IP-10/CXCL10 increased compared to patients with active disease. These data suggest that by modulating miRNAs, L. (V.) braziliensis may interfere with chemokine production and hence the inflammatory processes underpinning lesion resolution. Our data suggest miR-548d-3p could be further evaluated as a prognostic marker for ATL and/or as a host-directed therapeutic target.


Assuntos
Leishmania braziliensis , MicroRNAs , Parasitos , Animais , Brasil , Humanos , Inflamação , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...