Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(2)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36851576

RESUMO

Proprotein convertases activate various envelope glycoproteins and participate in cellular entry of many viruses. We recently showed that the convertase furin is critical for the infectivity of SARS-CoV-2, which requires cleavage of its spike protein (S) at two sites: S1/S2 and S2'. This study investigates the implication of the two cholesterol-regulating convertases SKI-1 and PCSK9 in SARS-CoV-2 entry. The assays used were cell-to-cell fusion in HeLa cells and pseudoparticle entry into Calu-3 cells. SKI-1 increased cell-to-cell fusion by enhancing the activation of SREBP-2, whereas PCSK9 reduced cell-to-cell fusion by promoting the cellular degradation of ACE2. SKI-1 activity led to enhanced S2' formation, which was attributed to increased metalloprotease activity as a response to enhanced cholesterol levels via activated SREBP-2. However, high metalloprotease activity resulted in the shedding of S2' into a new C-terminal fragment (S2″), leading to reduced cell-to-cell fusion. Indeed, S-mutants that increase S2″ formation abolished S2' and cell-to-cell fusion, as well as pseudoparticle entry, indicating that the formation of S2″ prevents SARS-CoV-2 cell-to-cell fusion and entry. We next demonstrated that PCSK9 enhanced the cellular degradation of ACE2, thereby reducing cell-to-cell fusion. However, different from the LDLR, a canonical target of PCSK9, the C-terminal CHRD domain of PCSK9 is dispensable for the PCSK9-induced degradation of ACE2. Molecular modeling suggested the binding of ACE2 to the Pro/Catalytic domains of mature PCSK9. Thus, both cholesterol-regulating convertases SKI-1 and PCSK9 can modulate SARS-CoV-2 entry via two independent mechanisms.


Assuntos
COVID-19 , Pró-Proteína Convertase 9 , Humanos , Enzima de Conversão de Angiotensina 2 , Fusão Celular , Células HeLa , Metaloproteases , Pró-Proteína Convertase 9/genética , SARS-CoV-2 , Proteína de Ligação a Elemento Regulador de Esterol 1
2.
J Med Chem ; 63(15): 8250-8264, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32602722

RESUMO

Animal venoms are rich in hundreds of toxins with extraordinary biological activities. Their exploitation is difficult due to their complexity and the small quantities of venom available from most venomous species. We developed a Venomics approach combining transcriptomic and proteomic characterization of 191 species and identified 20,206 venom toxin sequences. Two complementary production strategies based on solid-phase synthesis and recombinant expression in Escherichia coli generated a physical bank of 3597 toxins. Screened on hMC4R, this bank gave an incredible hit rate of 8%. Here, we focus on two novel toxins: N-TRTX-Preg1a, exhibiting an inhibitory cystine knot (ICK) motif, and N-BUTX-Ptr1a, a short scorpion-CSαß structure. Neither N-TRTX-Preg1a nor N-BUTX-Ptr1a affects ion channels, the known targets of their toxin scaffolds, but binds to four melanocortin receptors with low micromolar affinities and activates the hMC1R/Gs pathway. Phylogenetically, these two toxins form new groups within their respective families and represent novel hMC1R agonists, structurally unrelated to the natural agonists.


Assuntos
Proteômica/métodos , Receptores de Melanocortina/agonistas , Venenos de Escorpião/farmacologia , Sequência de Aminoácidos , Animais , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Receptores de Melanocortina/metabolismo , Venenos de Escorpião/genética , Venenos de Escorpião/isolamento & purificação , Venenos de Escorpião/metabolismo
3.
Comp Biochem Physiol B Biochem Mol Biol ; 144(3): 334-42, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16716626

RESUMO

The cDNA encoding BthaTL, a serine peptidase from the venom of the snake Bothrops alternatus, was cloned and sequenced. The deduced primary structure shows over 62% of identity with snake venom thrombin-like enzymes (SVTLEs), molecules with high substrate specificity toward different natural substrates. Indeed, a phylogenetic reconstruction by two different methods clustered this enzyme close to other SVTLEs. These enzymes generally affect the hemostatic system in several ways, and therefore are used as tools in pharmacology and clinical diagnosis. A three-dimensional model of BthaTL was built by homology modeling using TSV-PA (Trimeresurus stejnegeri venom plasminogen activator) crystal structure as template. BthaTL model showed that the typical catalytic triad conformation of serine peptidases was preserved. The calcium coordination ligands were absent or adopt an unfavorable conformation, preventing interactions with metals. On the other hand, the Asp97-Arg174 saline bridge of TSV-PA was not found and its specificity determinant Phe193 is replaced by a Gly in BthaTL. The substitution of essential residues in the neighborhoods of the catalytic site cleft of BthaTL indicates that these two proteins do not share the same enzymatic specificity, what means that BthaTL will probably not activate plasminogen. Such observations may be helpful in the understanding of the molecular mechanism for substrate specificity of these enzymes.


Assuntos
Modelos Moleculares , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Venenos de Serpentes/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Domínio Catalítico , Clonagem Molecular , DNA Complementar/isolamento & purificação , Imageamento Tridimensional , Dados de Sequência Molecular , Filogenia , Plasminogênio/metabolismo , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...