Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 161: 107157, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33753193

RESUMO

Atlantic Forest White Morpho butterflies, currently classified as Morpho epistrophus and M. iphitus, are endemic to the Atlantic Forest, where they are widely distributed throughout heterogeneous environmental conditions. Studies with endemic butterflies allow to elucidate questions on both patterns of diversity distribution and current and past processes acting on insect groups in this biodiversity hotspot. In the present study, we characterized one mtDNA marker (COI sequences) and developed 11 polymorphic loci of microsatellite for 22 sampling locations distributed throughout the entire Atlantic Forest domain. We investigated both the taxonomic limits of taxa classified as White Morpho and the structure and distribution of the genetic diversity throughout their populations. Genetic markers and distribution data failed to identify species diversification, population structure, or isolation among subpopulations attributed to different taxa proposed for the White Morpho, suggesting that the current distinction between two species is unreasonable. The Bayesian coalescent tree based on COI sequences also failed to recover monophyletic clades for the putative species, and pointed instead to a north-south oriented pattern of genetic structure, with the northern clade coalescing later than the southern clade. Northern samples also showed more intragroup structure than southern samples based on mtDNA data. Clustering tests based on microsatellites indicated the existence of three genetic clusters, with turnover between the states of Paraná and São Paulo. The north-south pattern found for the White Morpho populations is showed for the first time to a endemic AF insect and coincides with the two different bioclimatic domains previously described for vertebrates and plants. Population structure observed for these butterflies is related to climate- and landscape-associated variables, mainly precipitation and elevation.


Assuntos
Borboletas/classificação , Borboletas/genética , Clima , Filogeografia , Altitude , Animais , Teorema de Bayes , Brasil , DNA Mitocondrial/genética , Florestas , Variação Genética , Filogenia , Chuva
2.
BMC Genomics ; 20(1): 455, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164105

RESUMO

BACKGROUND: Natural rubber, an indispensable commodity used in approximately 40,000 products, is fundamental to the tire industry. The rubber tree species Hevea brasiliensis (Willd. ex Adr. de Juss.) Muell-Arg., which is native the Amazon rainforest, is the major producer of latex worldwide. Rubber tree breeding is time consuming, expensive and requires large field areas. Thus, genetic studies could optimize field evaluations, thereby reducing the time and area required for these experiments. In this work, transcriptome sequencing was used to identify a full set of transcripts and to evaluate the gene expression involved in the different cold-response strategies of the RRIM600 (cold-resistant) and GT1 (cold-tolerant) genotypes. RESULTS: We built a comprehensive transcriptome using multiple database sources, which resulted in 104,738 transcripts clustered in 49,304 genes. The RNA-seq data from the leaf tissues sampled at four different times for each genotype were used to perform a gene-level expression analysis. Differentially expressed genes (DEGs) were identified through pairwise comparisons between the two genotypes for each time series of cold treatments. DEG annotation revealed that RRIM600 and GT1 exhibit different chilling tolerance strategies. To cope with cold stress, the RRIM600 clone upregulates genes promoting stomata closure, photosynthesis inhibition and a more efficient reactive oxygen species (ROS) scavenging system. The transcriptome was also searched for putative molecular markers (single nucleotide polymorphisms (SNPs) and microsatellites) in each genotype. and a total of 27,111 microsatellites and 202,949 (GT1) and 156,395 (RRIM600) SNPs were identified in GT1 and RRIM600. Furthermore, a search for alternative splicing (AS) events identified a total of 20,279 events. CONCLUSIONS: The elucidation of genes involved in different chilling tolerance strategies associated with molecular markers and information regarding AS events provides a powerful tool for further genetic and genomic analyses of rubber tree breeding.


Assuntos
Resposta ao Choque Frio/genética , Hevea/genética , Processamento Alternativo , Perfilação da Expressão Gênica , Marcadores Genéticos , Hevea/metabolismo , Anotação de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Domínios Proteicos , Análise de Sequência de RNA
3.
Front Plant Sci ; 9: 397, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29643861

RESUMO

Sugarcane exhibits a complex genome mainly due to its aneuploid nature and high ploidy level, and sequencing of its genome poses a great challenge. Closely related species with well-assembled and annotated genomes can be used to help assemble complex genomes. Here, a stable quantitative trait locus (QTL) related to sugar accumulation in sorghum was successfully transferred to the sugarcane genome. Gene sequences related to this QTL were identified in silico from sugarcane transcriptome data, and molecular markers based on these sequences were developed to select bacterial artificial chromosome (BAC) clones from the sugarcane variety SP80-3280. Sixty-eight BAC clones containing at least two gene sequences associated with the sorghum QTL were sequenced using Pacific Biosciences (PacBio) technology. Twenty BAC sequences were found to be related to the syntenic region, of which nine were sufficient to represent this region. The strategy we propose is called "targeted sequencing by gene synteny," which is a simpler approach to understanding the genome structure of complex genomic regions associated with traits of interest.

4.
PLoS One ; 13(3): e0192165, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29513673

RESUMO

The primary focus of tropical forest restoration has been the recovery of forest structure and tree taxonomic diversity, with limited attention given to genetic conservation. Populations reintroduced through restoration plantings may have low genetic diversity and be genetically structured due to founder effects and genetic drift, which limit the potential of restoration to recover ecologically resilient plant communities. Here, we studied the genetic diversity, genetic structure and differentiation using single nucleotide polymorphisms (SNP) markers between restored and natural populations of the native tree Casearia sylvestris in the Atlantic Forest of Brazil. We sampled leaves from approximately 24 adult individuals in each of the study sites: two restoration plantations (27 and 62 years old) and two forest remnants. We prepared and sequenced a genotyping-by-sequencing library, SNP markers were identified de novo using Stacks pipeline, and genetic parameters and structure analyses were then estimated for populations. The sequencing step was successful for 80 sampled individuals. Neutral genetic diversity was similar among restored and natural populations (AR = 1.72 ± 0.005; HO = 0.135 ± 0.005; HE = 0.167 ± 0.005; FIS = 0.16 ± 0.022), which were not genetically structured by population subdivision. In spite of this absence of genetic structure by population we found genetic structure within populations but even so there is not spatial genetic structure in any population studied. Less than 1% of the neutral alleles were exclusive to a population. In general, contrary to our expectations, restoration plantations were then effective for conserving tree genetic diversity in human-modified tropical landscapes. Furthermore, we demonstrate that genotyping-by-sequencing can be a useful tool in restoration genetics.


Assuntos
Casearia/genética , Conservação dos Recursos Naturais/métodos , Florestas , Variação Genética , Genoma de Planta/genética , Árvores/genética , Brasil , Casearia/crescimento & desenvolvimento , Genética Populacional , Genótipo , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Árvores/crescimento & desenvolvimento
5.
PLoS One ; 9(2): e90087, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587220

RESUMO

Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Hidrocarbonetos/metabolismo , Metagenoma/genética , Petróleo/microbiologia , Petróleo/provisão & distribuição , Aerobiose , Bactérias/classificação , Brasil , Filogenia , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...