Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 168(12): 286, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37940763

RESUMO

The discovery rate of new plant viruses has increased due to studies involving high-throughput sequencing (HTS), particularly for single-stranded DNA viruses of the family Genomoviridae. We carried out an HTS-based survey of genomoviruses in a wide range of native and exotic trees grown in the Brazilian Cerrado biome, and the complete genome sequences of two novel members of the family Genomoviridae from two distinct genera were determined. Specific primers were designed to detect these genomoviruses in individual samples. A new gemykolovirus (Tecoma stans associated gemykolovirus) was detected in Tecoma stans, and a new gemykibivirus (Ouratea duparquetiana associated gemykibivirus) was detected in Ouratea duparquetiana. A gemykrogvirus related to Gila monster associated gemykrogvirus (80% pairwise identity) was also detected in foliar samples of Trembleya parviflora. Our pilot study paves the way for a better characterization of this diverse collection of genomoviruses as well as their interactions with the associated tree species.


Assuntos
Vírus de DNA , Plantas , Vírus de DNA/genética , Brasil , Projetos Piloto , Filogenia , Ecossistema , Árvores
2.
Arch Virol ; 167(7): 1597-1602, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35562613

RESUMO

The natural occurrence of mixed infections and large populations of the polyphagous vector (Bemisia tabaci) are the main factors associated with the intensification of the genetic flow among begomoviruses in Neotropical areas, contributing to the emergence of novel recombinants. Here, high-throughput sequencing and metagenomic analyses were employed to discover and characterize a novel recombinant bipartite begomovirus, tentatively named "macroptilium bright yellow interveinal virus" (MaBYIV) in the weed Macroptilium erythroloma (Fabaceae). Recombination signals were detected in MaBYIV, involving bean golden mosaic virus (BGMV) and tomato mottle leaf curl virus (ToMoLCV) genome components. All of the original MaBYIV-infected M. erythroloma plants were found to have mixed infections with BGMV. MaBYIV was transmitted to bean and soybean cultivars via B. tabaci MEAM 1, indicating that M. erythroloma may play a role as a year-round reservoir of a potential new viral pathogen of economically important legume crops.


Assuntos
Begomovirus , Coinfecção , Fabaceae , Begomovirus/genética , DNA Viral/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Doenças das Plantas
3.
Virus Genes ; 57(1): 83-93, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33236238

RESUMO

Yield losses induced by a complex of begomoviruses are observed across all major tomato-producing areas in Brazil. Tomato severe rugose virus (ToSRV) is the most widespread begomovirus in the country. Conversely, tomato common mosaic virus (ToCmMV) displays a more restricted geographical distribution to areas associated with the Atlantic Rain Forest (ARF) biome, encompassing the States of Espírito Santo-ES, Minas Gerais-MG, and Rio de Janeiro-RJ. Here, we characterized 277 tomato-infecting isolates collected in fields located within the ARF biome from 2006 to 2018. ToSRV displayed the highest prevalence (n = 157), followed by ToCmMV (n = 95) and tomato interveinal chlorosis virus (n = 14). Four other begomoviruses were also detected, but with very low incidences. ToCmMV was the predominant begomovirus in the ARF biome up to 2014-2015 with very low ToSRV incidence. Subsequently, ToSRV became the most prevalent species in ES and RJ, but ToCmMV was still predominating in the "Zona da Mata" meso-region in MG. Due to the remarkable endemic distribution of ToCmMV, we carried out phylogeographical studies of this virus using information from all 28 available isolates with complete DNA-A sequences. The closest common ancestor of ToCmMV was more likely originated around Coimbra-MG area ≈ 25 years before the formal report of this viral species. So far, all surveys indicated tomatoes as the only natural hosts of ToCmMV with outbreaks occurring mainly (but not exclusively) in highland areas. ToSRV shows a more widespread incidence across both highland and lowland areas of the ARF biome.


Assuntos
Begomovirus , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Begomovirus/classificação , Begomovirus/genética , Begomovirus/isolamento & purificação , Biodiversidade , Brasil , DNA Viral , Filogeografia , Floresta Úmida
4.
Viruses ; 12(9)2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867192

RESUMO

In a systematic field survey for plant-infecting viruses, leaf tissues were collected from trees showing virus-like symptoms in Brazil. After viral enrichment, total RNA was extracted and sequenced using the MiSeq platform (Illumina). Two nearly full-length picorna-like genomes of 9534 and 8158 nucleotides were found associated with Hovenia dulcis (Rhamnaceae family). Based upon their genomic information, specific primers were synthetized and used in RT-PCR assays to identify plants hosting the viral sequences. The larger contig was tentatively named as Hovenia dulcis-associated virus 1 (HDaV1), and it exhibited low nucleotide and amino acid identities with Picornavirales species. The smaller contig was related to insect-associated members of the Dicistroviridae family but exhibited a distinct genome organization with three non-overlapping open reading frames (ORFs), and it was tentatively named as Hovenia dulcis-associated virus 2 (HDaV2). Phylogenetic analysis using the amino acid sequence of RNA-dependent RNA polymerase (RdRp) revealed that HDaV1 and HDaV2 clustered in distinct groups, and both viruses were tentatively assigned as new members of the order Picornavirales. HDaV2 was assigned as a novel species in the Dicistroviridae family. The 5' ends of both viruses are incomplete. In addition, a nucleotide composition analysis (NCA) revealed that HDaV1 and HDaV2 have similarities with invertebrate-infecting viruses, suggesting that the primary host(s) of these novel virus species remains to be discovered.


Assuntos
Dicistroviridae/genética , Picornaviridae/genética , Brasil , Dicistroviridae/classificação , Dicistroviridae/isolamento & purificação , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Picornaviridae/classificação , Picornaviridae/isolamento & purificação , Doenças das Plantas/virologia , Rhamnaceae/virologia , Proteínas Virais/genética
5.
Viruses ; 12(9)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942623

RESUMO

The knowledge of genomic data of new plant viruses is increasing exponentially; however, some aspects of their biology, such as vectors and host range, remain mostly unknown. This information is crucial for the understanding of virus-plant interactions, control strategies, and mechanisms to prevent outbreaks. Typically, rhabdoviruses infect monocot and dicot plants and are vectored in nature by hemipteran sap-sucking insects, including aphids, leafhoppers, and planthoppers. However, several strains of a potentially whitefly-transmitted virus, papaya cytorhabdovirus, were recently described: (i) bean-associated cytorhabdovirus (BaCV) in Brazil, (ii) papaya virus E (PpVE) in Ecuador, and (iii) citrus-associated rhabdovirus (CiaRV) in China. Here, we examine the potential of the Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) to transmit BaCV, its morphological and cytopathological characteristics, and assess the incidence of BaCV across bean producing areas in Brazil. Our results show that BaCV is efficiently transmitted, in experimental conditions, by B. tabaci MEAM1 to bean cultivars, and with lower efficiency to cowpea and soybean. Moreover, we detected BaCV RNA in viruliferous whiteflies but we were unable to visualize viral particles or viroplasm in the whitefly tissues. BaCV could not be singly isolated for pathogenicity tests, identification of the induced symptoms, and the transmission assay. BaCV was detected in five out of the seven states in Brazil included in our study, suggesting that it is widely distributed throughout bean producing areas in the country. This is the first report of a whitefly-transmitted rhabdovirus.


Assuntos
Hemípteros/virologia , Doenças das Plantas/virologia , Infecções por Rhabdoviridae/transmissão , Infecções por Rhabdoviridae/virologia , Rhabdoviridae/isolamento & purificação , Animais , Evolução Biológica , Brasil , Carica/virologia , China , Equador , Genômica , Oriente Médio , Folhas de Planta/virologia , Vírus de Plantas , Plantas/virologia , Rhabdoviridae/classificação , Rhabdoviridae/genética , Análise de Sequência
6.
Genome Announc ; 6(5)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29437108

RESUMO

In Brazil, Potyvirus species in sweet potatoes have been detected mostly by serology. Here, we report the complete genome sequences of two Potyvirus species, Sweet potato feathery mottle virus strain (SPFMV-UNB-01) and Sweet potato virus G strain (SPVG-UNB-01).

7.
Viruses ; 7(5): 2518-33, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26008699

RESUMO

The tomato yellow leaf curl disease (TYLCD) causes severe damage to tomato (Solanum lycopersicum L.) crops throughout tropical and subtropical regions of the world. TYLCD is associated with a complex of single-stranded circular DNA plant viruses of the genus Begomovirus (family Geminiviridae) transmitted by the whitefy Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). The tomato inbred line TX 468-RG is a source of monogenic recessive resistance to begomoviruses derived from the hybrid cv. Tyking F1. A detailed analysis of this germplasm source against tomato yellow leaf curl virus-Israel (TYLCV-IL), a widespread TYLCD-associated virus, showed a significant restriction to systemic virus accumulation even under continuous virus supply. The resistance was effective in limiting the onset of TYLCV-IL in tomato, as significantly lower primary spread of the virus occurred in resistant plants. Also, even if a limited number of resistant plants could result infected, they were less efficient virus sources for secondary spread owing to the impaired TYLCV-IL accumulation. Therefore, the incorporation of this resistance into breeding programs might help TYLCD management by drastically limiting TYLCV-IL spread.


Assuntos
Begomovirus/imunologia , Resistência à Doença , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Solanum lycopersicum/imunologia
8.
Mycol Res ; 113(Pt 2): 261-74, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19059339

RESUMO

Eight monotypic hyphomycete genera new to science are described from the trichomes of native plants growing in the cerrado of Brazil: Trichomatoclava cerradensis, Echinoconidiophorum cerradense, Globoconidiopsis cerradensis, Globoconidium cerradense, Helminthosporiomyces cerradensis, Trichomatosphaera [corrected] cerradensis , Phragmoconidium cerradense, and Vesiculohyphomyces cerradensis gens. spp. nov. Two of the new genera were found on hosts belonging in Myrtaceae, and one of each of the following families: Icacinaceae, Malphigiaceae, Fabaceae, Dilleniaceae, Chrysobalanaceae, and Caryocaraceae. These discoveries suggest that the trichomes of neotropical plants are an unexplored source of novel fungal diversity, and merit more attention in biodiversity surveys.


Assuntos
Biodiversidade , Fungos/genética , Plantas/microbiologia , Brasil , Fungos/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...