Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 60(20): 5880-5890, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34263809

RESUMO

We report on the design, construction, and performance of a custom apparatus built to measure the frequency- and temperature-dependent absorptivity of millimeter-wave light by cosmic analog dusts. We highlight the unique challenges faced as well as a few key innovations that are part of the instrument. Among those is an ultra-compact Fourier transform spectrometer. We have measured its effective frequency range and FWHM resolution to be 150-2100 GHz and ∼45GHz, respectively. Another innovation is a cold sample positioner whose temperature can be controlled within the range of 3.7-50 K. The use of a pulse-tube cryocooler results in a pulse-synchronous signal that dominates the detector (bolometer) signal. Methods used to address that challenge are also presented.

2.
Appl Opt ; 45(29): 7643-51, 2006 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17068598

RESUMO

Frequency-selective bolometers (FSBs) are a new type of detector for millimeter and submillimeter wavelengths that are transparent to all but a narrow range of frequencies as set by characteristics of the absorber itself. Therefore stacks of FSBs tuned to different frequencies provide a low-loss compact method for utilizing a large fraction of the light collected by a telescope. Tests of prototype FSBs indicate that the absorption spectra are well predicted by models, that peak absolute absorption efficiencies of the order of 50% are attainable, and that their out-of-band transmission is high.

3.
Phys Rev Lett ; 96(1): 011302, 2006 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16486434

RESUMO

We report new results from the Cryogenic Dark Matter Search (CDMS II) at the Soudan Underground Laboratory. Two towers, each consisting of six detectors, were operated for 74.5 live days, giving spectrum-weighted exposures of 34 (12) kg d for the Ge (Si) targets after cuts, averaged over recoil energies 10-100 keV for a weakly interacting massive particle (WIMP) mass of 60 GeV/c2. A blind analysis was conducted, incorporating improved techniques for rejecting surface events. No WIMP signal exceeding expected backgrounds was observed. When combined with our previous results from Soudan, the 90% C.L. upper limit on the spin-independent WIMP-nucleon cross section is 1.6 x 10(-43) cm2 from Ge and 3 x 10(-42) cm2 from Si, for a WIMP mass of 60 GeV/c2. The combined limit from Ge (Si) is a factor of 2.5 (10) lower than our previous results and constrains predictions of supersymmetric models.

4.
Phys Rev Lett ; 84(25): 5699-703, 2000 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-10991035

RESUMO

The Cryogenic Dark Matter Search (CDMS) employs Ge and Si detectors to search for weakly interacting massive particles (WIMPs) via their elastic-scattering interactions with nuclei while discriminating against interactions of background particles. CDMS data, accounting for the neutron background, give limits on the spin-independent WIMP-nucleon elastic-scattering cross section that exclude unexplored parameter space above 10 GeV/c2 WIMP mass and, at >75% C.L., the entire 3sigma allowed region for the WIMP signal reported by the DAMA experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...