Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 169: 340-347, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29800909

RESUMO

In this study, the influence of nanometer scale roughness on bacterial adhesion and subsequent biofilm formation has been evaluated using spatially organized microtopographic surface patterns for four major opportunistic pathogens of the genus Staphylococcus (S. epidermidis and S. aureus) responsible for associated-biofilm infections on biomedical devices. The results presented demonstrated that regardless of the strain employed the initial adhesion events to these surfaces are directed by cell-surface contact points maximisation and thus, bacterial cells actively choose their position to settle based on that principle. Accordingly, bacterial cells were found to preferably adhere to the square corners and convex walls of recessed surface features rather than the flat or concave walls of equal protruding features. This finding reveals, for the first time, that the particular shape of the surfaces features employed potentially determined the initial location of the adhering cells on textured surfaces. It was further shown that all surfaces patterns investigated produce a significant reduction in bacterial adhesion (40-95%) and biofilm formation (22-58%). This important observation could not be related to physical constrains or increased solid surface hydrophobicity, as previously suggested by other authors using engineered topographies with microscale surface roughness. It is evident that other causes, such as nanoscale surface roughness-induced interaction energies, might be controlling the process of bacterial adhesion and biofilm formation on surfaces with well-defined nanoscale topography.


Assuntos
Nanopartículas/química , Staphylococcus/química , Aderência Bacteriana , Biofilmes , Tamanho da Partícula , Propriedades de Superfície
2.
Langmuir ; 30(16): 4633-41, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24697600

RESUMO

The influence of surface topography on bacterial adhesion has been investigated using a range of spatially organized microtopographic surface patterns generated on polydimethylsiloxane (PDMS) and three unrelated bacterial strains. The results presented indicate that bacterial cells actively choose their position to settle, differentiating upper and lower areas in all the surface patterns evaluated. Such selective adhesion depends on the cells' size and shape relative to the dimensions of the surface topographical features and surface hydrophobicity/hydrophilicity. Moreover, it was found that all the topographies investigated provoke a significant reduction in bacterial adhesion (30-45%) relative to the smooth control samples regardless of surface hydrophobicity/hydrophilicity. This remarkable finding constitutes a general phenomenon, occurring in both Gram-positive and Gram-negative cells with spherical or rod shape, dictated by only surface topography. Collectively, the results presented in this study demonstrate that spatially organized microtopographic surface patterns represent a promising approach to controlling/inhibiting bacterial adhesion and biofilm formation.


Assuntos
Aderência Bacteriana/fisiologia , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...