Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Plant Dis ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902879

RESUMO

Caladium (Caladium × hortulanum) is an ornamental plant popular for its variable and colorful foliage. In 2020, plants showing leaf spots and blight, typical of anthracnose, were found in a field trial at the University of Florida's Gulf Coast Research and Education Center (UF/GCREC) in Wimauma, FL, USA. Leaf samples consistently yielded a Colletotrichum-like species with curved conidia and abundant setae production in the acervuli. The internal transcribed spacer (ITS), partial sequences of the glyceraldehyde-3-phosphate dehydrogenase gene (gapdh), actin gene (act), chitin synthase 1 gene (chs-1), beta-tubulin gene (tub2), and histone3 gene (his3) were amplified and sequenced. Blastn searches in the NCBI GenBank database revealed similarities to species of the Colletotrichum truncatum species complex. Phylogenetic analyses using multi-locus sequence data supports a distinct species within this complex, with the closest related species being C. curcumae. Based on morphological and phylogenetic analyses, a new species of Colletotrichum, named C. caladii, is reported. Pathogenicity assays and subsequent isolation confirmed that this species was the causal agent of the disease.

2.
Plant Genome ; : e20477, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822520

RESUMO

Aggressive strains of Neopestalotiopsis sp. have recently emerged as devastating pathogens of strawberry (Fragaria × ananassa Duchesne ex Rozier), infecting nearly all plant parts and causing severe outbreaks of leaf spot and fruit rot in Florida and globally. The development of host resistance is imperative due to the absence of fungicides that effectively inhibit Neopestalotiopsis sp. growth on an infected strawberry crop. Here, we analyzed 1578 individuals from the University of Florida's (UF) strawberry breeding program to identify and dissect genetic variation for resistance to Neopestalotiopsis sp. and to explore the feasibility of genomic selection. We found that less than 12% of elite UF germplasm exhibited resistance, with narrow-sense heritability estimates ranging from 0.28 to 0.69. Through genome-wide association studies (GWAS), we identified two loci accounting for 7%-16% of phenotypic variance across four trials and 3 years. Several candidate genes encoding pattern recognition receptors, intra-cellular nucleotide-binding leucine-rich repeats, and downstream components of plant defense pathways co-localized with the Neopestalotiopsis sp. resistance loci. Interestingly, favorable alleles at the largest-effect locus were rare in elite UF material and had previously been unintentionally introduced from an exotic cultivar. The array-based markers and candidate genes described herein provide the foundation for targeting this locus through marker-assisted selection. The predictive abilities of genomic selection models, with and without explicitly modeling peak GWAS markers as fixed effects, ranged between 0.25 and 0.59, suggesting that genomic selection holds promise for enhancing resistance to Neopestalotiopsis sp. in strawberry.

3.
Plant Dis ; : PDIS11232304RE, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38411605

RESUMO

Devastating disease outbreaks with leaf spot symptoms and fruit rot caused by a fungus identified as a cryptic species of Neopestalotiopsis have generated concern in the Florida strawberry industry. Some Neopestalotiopsis species are saprobes in soil and plant debris, but the ability of the new Neopestalotiopsis sp. to survive in strawberry debris was unknown. Therefore, the objectives of this study were to develop a semiselective medium for isolation of Neopestalotiopsis spp. and to evaluate Neopestalotiopsis sp. survival in soil and strawberry plant debris over the summer in Florida. The Neopestalotiopsis semiselective medium (NSM) inhibited growth of most fungal species pathogenic to strawberry in Florida, except Neopestalotiopsis rosae, Neopestalotiopsis sp., and Phomopsis obscurans, in addition to Penicillium spp., which are nonpathogenic. However, Neopestalotiopsis species, P. obscurans, and Penicillium spp. could be distinguished in the medium through morphological characteristics. Soil samples arbitrarily collected from six commercial fields toward the end of the season (May) and before (July) and after (September) preplant soil fumigation in the following season were processed with NSM, and Neopestalotiopsis spp. populations were calculated as CFU per gram of soil. CFU ranged from 48.3 to 2,410.8 at the end of the season and from 1.7 to 630.8 before soil fumigation, but Neopestalotiopsis spp. were not recovered after soil treatment. However, 1.7 to 25 CFU were obtained from the nontreated areas in the row middles. Neopestalotiopsis sp. survival was also evaluated on diseased strawberry plants (leaves and crowns) exposed to the environment for 17 months. On leaves, Neopestalotiopsis spp. were recovered for 6 months before leaf decomposition, whereas the number of CFU on crowns declined monthly, but colonies were still recovered during the final evaluation months. A high-resolution melting analysis confirmed most of the colonies from soil and crowns were the new Neopestalotiopsis sp. Our results show Neopestalotiopsis sp. can survive in soil and strawberry debris under Florida summer conditions and may serve as a source of inoculum for the subsequent season.

4.
Phytopathology ; : PHYTO05230175R, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37942874

RESUMO

Phytophthora cactorum is the most common causal agent of Phytophthora crown rot and leather rot of strawberry, but P. nicotianae is also responsible for the disease in Florida. Studies of P. nicotianae populations have suggested that different groups of genotypes are associated with different hosts; however, it is not yet clear how many lineages exist globally and how they are related to different production systems. The aim of this study was to determine the genetic relationships of P. nicotianae isolates from Florida strawberry with genotypes reported from other hosts, quantify the genetic variation on strawberry, and test for an association with nursery source. A total of 49 isolates of P. nicotianae were collected from strawberry plants originating from multiple nursery sources during six seasons of commercial fruit production in Florida. Microsatellite genotyping identified 28 multilocus genotypes on strawberry that were distinct among 208 isolates originating from various hosts and locations. Based on STRUCTURE analysis, two genetic groups were identified: one consisting of isolates from strawberry, and the other comprising samples from different hosts. Multilocus genotypes were shared among nursery sources, and populations defined by nursery were not differentiated. Both mating types were found among the isolates from North Carolina- and California-origin plants and in most strawberry seasons; however, a predominance of A1 was observed, and regular sexual reproduction was not supported by the data. This study reveals a unique genetic population of P. nicotianae associated with strawberry and emphasizes the vital role of nursery monitoring in mitigating disease spread.

5.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061796

RESUMO

AIMS: To identify whether microorganisms isolated from blueberry flowers can inhibit the growth of Colletotrichum, an opportunistic plant pathogen that infects flowers and threatens yields, and to assess the impacts of floral microbes and Colletotrichum pathogens on artificial nectar sugars and honey bee consumption. METHODS AND RESULTS: The growth inhibition of Colletotrichum (Colletotrichum acutatum, Colletotrichum fioriniae, and Colletotrichum gloeosporioides) was screened using both artificial nectar co-culture and dual culture plate assays. All candidate nectar microbes were screened for antagonism against a single C. acutatum isolate. Then, the top four candidate nectar microbes showing the strongest inhibition of C. acutatum (Neokomagataea thailandica, Neokomagataea tanensis, Metschnikowia rancensis, and Symmetrospora symmetrica) were evaluated for antagonism against three additional C. acutatum isolates, and single isolates of both C. fioriniae and C. gloeosporioides. In artificial nectar assays, single and three-species cultures inhibited the growth of two of four C. acutatum isolates by ca. 60%, but growth of other Colletotrichum species was not affected. In dual culture plate assays, inhibition was observed for all Colletotrichum species for at least three of four selected microbial antagonists (13%‒53%). Neither honey bee consumption of nectar nor nectar sugar concentrations were affected by any microbe or pathogen tested. CONCLUSIONS: Selected floral microbes inhibited growth of all Colletotrichum species in vitro, although the degree of inhibition was specific to the assay and pathogen examined. In all microbial treatments, nectar sugars were preserved, and honey bee preference was not affected.


Assuntos
Mirtilos Azuis (Planta) , Colletotrichum , Animais , Abelhas , Néctar de Plantas , Bioensaio , Açúcares
6.
Sci Rep ; 13(1): 7385, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149656

RESUMO

Phytophthora crown rot (PhCR) caused by Phytophthora cactorum is one of the most damaging diseases of strawberry worldwide. Mefenoxam is one of the major fungicides currently used to manage PhCR. However, the emergence and spread of resistant isolates have made controlling the pathogen in the field problematic. In the present study, using whole genome sequencing analysis, mutations associated with mefenoxam-resistant isolates were identified in six different genomic regions of P. cactorum. The 95.54% reads from a sensitive isolate pool and 95.65% from a resistant isolate pool were mapped to the reference genome of P. cactorum P414. Four point mutations were in coding regions while the other two were in noncoding regions. The genes harboring mutations were functionally unknown. All mutations present in resistant isolates were confirmed by sanger sequencing of PCR products. For the rapid diagnostic assay, SNP-based high-resolution melting (HRM) markers were developed to differentiate mefenoxam-resistant P. cactorum from sensitive isolates. The HRM markers R3-1F/R3-1R and R2-1F/R2-1R were suitable to differentiate both sensitive and resistant profiles using clean and crude DNA extraction. None of the mutations associated with mefenoxam resistance found in this study were in the RNA polymerase subunit genes, the hypothesized target of this compound in oomycetes. Our findings may contribute to a better understanding of the mechanisms of resistance of mefenoxam in oomycetes since serves as a foundation to validate the candidate genes as well as contribute to the monitoring of P. cactorum populations for the sustainable use of this product.


Assuntos
Fragaria , Phytophthora , Phytophthora/genética , Fragaria/genética , Alanina/genética , Mutação
7.
Plant Dis ; 107(10): 3071-3078, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36947843

RESUMO

Botrytis fruit rot (BFR) and anthracnose fruit rot (AFR) are diseases of concern to strawberry growers. Both diseases are managed mainly by fungicide applications from the nursery (plant production) to the end of the growing season (fruit production). In Florida, captan is the main broad-spectrum fungicide used to control BFR and AFR. It has been tested in many trials over the years in various programs in alternation with single-site fungicides or weekly applications. Due to its broad-spectrum activity, captan is a pivotal tool in fungicide resistance management, because resistance to several fungicides has been reported in populations causing BFR and AFR. Our objective was to determine the effectiveness and profitability of applications of captan for controlling BFR and AFR based on a univariate meta-analysis considering data from 25 field trials conducted from 2005 to 2021 in Florida. Captan applications significantly improved marketable yields and reduced BFR and AFR incidence during late- and total-season periods. Marketable yields were significantly improved even when the effect on disease control was not significant. Our results indicate 100% probability that weekly captan applications would return the investment during low, medium, and high strawberry pricing regimes, although the magnitude of the return will depend on strawberry market prices. However, the probabilities of reducing BFR, AFR, and culls were lower. Results from our meta-analysis demonstrate the value of captan as an important tool for strawberry growers. Captan applications, in addition to effectively controlling BFR and AFR and improving marketable yields, will result in investment returns at any strawberry price level.


Assuntos
Fragaria , Fungicidas Industriais , Captana , Fungicidas Industriais/farmacologia , Botrytis , Frutas , Doenças das Plantas/prevenção & controle
8.
Plant Dis ; 107(8): 2483-2489, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36726003

RESUMO

Ultraviolet light at wavelengths from 254 to 283 nm/has been reported to effectively suppress powdery mildews in several crops, including some cucurbits. Its use to suppress powdery mildew (Podosphaera xanthii) specifically in cantaloupe has not been previously reported. We evaluated the foregoing technology in cantaloupe fields for suppression of powdery mildew and possible effects on plant growth and yield. In a controlled laboratory study, greenhouse-grown cantaloupe plants were exposed to a gradient of UV-C (254 nm) doses during darkness, and the effects upon powdery mildew development and the plant were evaluated. We also evaluated the efficacy of nighttime applications of UV-C at 100 and 200 J/m2 against powdery mildew on adaxial leaf surfaces in greenhouse, high-tunnel, and open-field plantings. UV-C at the foregoing doses reduced sporulation and germination of P. xanthii conidia without damaging plants. On cantaloupe seedlings in the greenhouse, disease severity was equivalently suppressed at all doses and frequencies of applications of the light. In high-tunnel and open-field experiments, the most effective control of powdery mildew was provided by UV-C applied at 200 J/m2 twice every week, where suppression provided by UV-C was generally equal to and sometimes better than the fungicide treatment. The foregoing UV-C dose and frequency of application also provided the highest yield under field conditions, indicating that UV-C treatment is a promising technology for commercially relevant suppression of powdery mildew on cantaloupe in a variety of growing systems.


Assuntos
Cucumis melo , Raios Ultravioleta , Erysiphe , Produtos Agrícolas , Plântula
9.
Plant Dis ; 107(5): 1544-1549, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36383989

RESUMO

A new Neopestalotiopsis sp. was recently reported causing outbreaks of leaf spot and fruit rot on strawberry in Florida, Georgia, and South Carolina. In contrast to other Pestalotiopsis pathogens, the new species appears more aggressive and destructive on strawberry. Current chemical options for management are disease suppressive at best, and affected growers have been experiencing major yield losses. In this study, we developed a molecular method based on polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) for identification of the new Neopestalotiopsis sp. from strawberry. Isolates of the new Neopestalotiopsis sp. collected in Florida; isolates of N. rosae, N. honoluluana, N. ellipsopora, N. saprophytica, N. samarangensis, and P. rhododendri; and isolates from South Carolina suspected to be the new Neopestalotiopsis sp. were included in this study. This method is based on PCR amplification of a ß-tubulin gene fragment using a previously published set of primers (Bt2a and Bt2b), followed by use of the restriction enzyme BsaWI. The enzyme cuts the PCR product from the new Neopestalotiopsis sp. twice, yielding fragments of 290 base pairs (bp) and 130 and 20 bp in size, whereas fragments from other species are only cut once, yielding fragments of 420 and 20 bp. This method will aid research labs and diagnostic clinics in the accurate and fast identification of the aggressive Neopestalotiopsis sp. variant from strawberry.


Assuntos
Fragaria , Xylariales , Fragaria/genética , Polimorfismo de Fragmento de Restrição , Xylariales/genética , Reação em Cadeia da Polimerase/métodos , Florida
10.
Plant Dis ; 107(1): 131-135, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35749667

RESUMO

Blackberry (Rubus L. subgenus Rubus Watson) is a deciduous berry crop that is the fourth most economically important berry crop, and its production is expanding in the southeastern United States. However, since most commercially available cultivars were bred under temperate conditions, they are not always well adapted and could be threatened by new pathogen populations inhabiting subtropical areas. In 2017, plants showing purple or brown leaf spots and angular-to-irregular lesions on both leaf surfaces, with clusters of black conidiophores at the center, were observed in a field trial at the University of Florida's Gulf Coast Research and Education Center (UF/GCREC) in Wimauma, FL. A fungus resembling Cercospora/Pseudocercospora was isolated from the lesions. The ribosomal DNA internal transcribed spacers, the translation elongation factor 1-alpha, and the actin genes were amplified and sequenced. Based on the phylogenetic analysis, the closest related species was Pseudocercospora pancratii. Pathogenicity assays and subsequent reisolation confirmed that this species is the causal agent of the disease. Among eight cultivars screened, no complete resistance was found. However, 'Osage' was the least susceptible, and 'Kiowa' was the most susceptible. This study is the first report of P. pancratii causing leaf spots on blackberry worldwide, and it may help shape future research into disease epidemiology and management for a crop that is rapidly expanding but has very limited disease information currently available for Florida growers.


Assuntos
Ascomicetos , Rubus , Florida , Filogenia , Melhoramento Vegetal
11.
Plant Dis ; 107(3): 651-657, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35801901

RESUMO

Phytophthora crown rot (PhCR) is an important disease of strawberry worldwide. Phytophthora cactorum is the most common causal agent, however, P. nicotianae was also recently reported causing PhCR in the U.S. Therefore, the goals of this study were to evaluate the resistance of strawberry cultivars from Florida and California, and to study the etiology of the two Phytophthora species causing PhCR. Sixteen strawberry cultivars were evaluated over three Florida seasons for susceptibility to P. cactorum, and P. nicotianae. Inoculations at different days after transplanting (DAT) were also carried out to evaluate the ability of both species to cause PhCR at different phenological stages of the plant. Plant wilting and mortality were assessed weekly, and disease incidence, and the area under the disease progress curve were calculated. Cultivars Sensation 'Florida127', 'Winterstar FL 05-107', and 'Florida Radiance' were susceptible, whereas 'Florida Elyana', 'Camarosa', 'Fronteras', 'Sweet Charlie', and 'Strawberry Festival' were highly resistant to both Phytophthora species. However, some cultivars exhibited stronger resistance to one species over the other. P. cactorum caused more PhCR when plants were inoculated at transplanting, 45, and 60 DAT, whereas P. nicotianae only caused disease when inoculated at transplanting. These results emphasize the importance of screening for disease resistance to guide management recommendations in commercial strawberry production as well as the need for proper pathogen identification since cultivar susceptibility might differ. Varying susceptibility to P. cactorum and P. nicotianae at different growth stages emphasizes the importance of considering both plant and pathogen biology when making management recommendations.


Assuntos
Fragaria , Phytophthora , Doenças das Plantas , Florida
12.
Plant Dis ; 107(7): 2177-2184, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36541878

RESUMO

Recently, the Florida strawberry industry faced unprecedented outbreaks of an emerging disease caused by the fungus Neopestalotipsis spp. Currently, there are no fungicides labeled to control this disease in the United States and the efficacy of single- and multisite fungicides is unknown. Therefore, this study aimed to determine the in vitro sensitivity of Neopestalotiopsis spp. isolates to fungicides with different modes of action and to evaluate the efficacy of these products on detached fruit and in the field. In preliminary in vitro tests, 30 commercially available fungicides were screened using discriminatory doses. The effective concentration that inhibited mycelial growth by 50% was determined for the most effective single-site fungicides. Four field experiments were conducted during the 2019-20, 2020-21, and 2021-22 seasons to determine product efficacy in managing the disease. The single-site fungicides fludioxonil, fluazinam, and sterol demethylation inhibitors, and the multisite fungicides captan, thiram, and chlorothalonil were the most effective in inhibiting pathogen growth and suppressing disease development. Conversely, products in Fungicide Resistance Action Committee (FRAC) groups 1 (methyl benzimidazole carbamate) and 7 (succinate-dehydrogenase inhibitors), except for benzovindiflupyr, were not effective against Neopestalotiopsis spp. Resistance to fungicides from FRAC group 11 (e.g., azoxystrobin) was confirmed by the presence of the G143A mutation in the cytochrome b gene together with inoculation tests and field trials. Our results provide information to support or discourage the registration of fungicides to manage Neopestalotiopsis fruit rot and leaf spot in strawberry production.


Assuntos
Fragaria , Fungicidas Industriais , Xylariales , Fragaria/microbiologia , Fungicidas Industriais/farmacologia , Captana , Mutação , Xylariales/genética
13.
Plant Dis ; 107(5): 1602-1608, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36415890

RESUMO

Phytophthora crown rot (PhCR) and leather rot (LR) caused by Phytophthora spp. are major threats to strawberry production worldwide. In the United States, these diseases are mainly caused by Phytophthora cactorum; however, P. nicotianae has also been recently reported causing PhCR. Growers have relied on three different chemical products (i.e., mefenoxam and phosphites for PhCR and LR, and azoxystrobin for LR). Because resistance to mefenoxam and azoxystrobin has been reported, this study aimed to assess the in vitro sensitivity of Phytophthora spp. isolates from strawberry to phosphites and investigate its efficacy on in vivo assays. In vitro sensitivity of P. cactorum (n = 128) and P. nicotianae (n = 24) isolates collected from 1997 to 2018 was assessed for phosphite at 10, 50, 100, 150, and 300 µg/ml. Regardless of the Phytophthora sp. and isolation organ, most of the isolates (75% for P. cactorum and 54.2% for P. nicotianae) had effective concentration that inhibits pathogen growth by 50% (EC50) values ranging from 50 to 100 µg/ml. In vivo tests with strawberry fruit and plants revealed that commercial formulations of phosphite applied at the highest field rate controlled P. cactorum isolates but failed to control PhCR and LR caused by some isolates of P. nicotianae. In this study, EC50 results from in vitro assay did not truly translate the efficacy of phosphites on controlling LR and PhCR caused by P. cactorum and P. nicotianae. Our findings support the hypothesis that the product acts in a dual way: direct on the pathogen and stimulating the plant immune system. Moreover, this has important implications for disease management, highlighting the importance of a correct diagnosis before phosphite recommendations, because its efficacy varies within Phytophthora spp.


Assuntos
Fragaria , Fosfitos , Phytophthora , Fosfitos/farmacologia , Doenças das Plantas/prevenção & controle , Estrobilurinas/farmacologia
14.
Pest Manag Sci ; 79(2): 891-898, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309928

RESUMO

BACKGROUND: Major pests of Florida strawberry (two-spotted spider mites, Tetranychus urticae Koch; chilli thrips, Scirtothrips dorsalis Hood; and western flower thrips, Frankliniella occidentalis Pergande) are difficult to manage using only conventional chemical control. Previous research has demonstrated high mortality of T. urticae eggs after exposure to ultraviolet B (UV-B) light. Additionally, ultraviolet C (UV-C) light has been shown to suppress powdery mildew in strawberry at doses between 85 and 200 J m-2 with no damage to the plant. Therefore, UV-C may also have the potential to be used as an integrated pest management tool for arthropod pests of strawberry. The objectives of this study were to: (i) determine the effect of UV-C on T. urticae, S. dorsalis, and F. occidentalis natural populations in open-field strawberry; and (ii) determine the effect of UV-C on T. urticae egg hatch after application in open-field strawberry. Field studies were conducted during the 2019-2020 and 2020-2021 strawberry seasons in Florida, USA. Four treatments were compared: (i) foliar application of spinetoram in response to natural pest pressure; (ii) application of UV-C 200 J m-2 twice a week; (iii) application of UV-C 350 J m-2 twice a week; and (iv) a non-treated control. RESULTS: In the field trials, suppression of T. urticae was observed at 350 J m-2 in 2020-2021. In the other field trials, no effect was observed due to low natural infestations. No negative impact on yield was observed from UV-C applications. CONCLUSION: UV-C shows promise as a component of an integrated pest management program for T. urticae in strawberry. © 2022 Society of Chemical Industry.


Assuntos
Fragaria , Controle de Pragas , Tetranychidae , Tisanópteros , Raios Ultravioleta , Animais , Florida , Tetranychidae/fisiologia
15.
Sensors (Basel) ; 22(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366257

RESUMO

The Strawberry Advisory System (SAS) is a tool developed to help Florida strawberry growers determine the risk of common fungal diseases and the need for fungicide applications. Leaf wetness duration (LWD) is one of the important parameters in SAS disease risk modeling. By accurately measuring the LWD, disease risk can be better assessed, leading to less fungicide use and more economic benefits to the farmers. This research aimed to develop and test a more accurate leaf wetness detection system than traditional leaf wetness sensors. In this research, a leaf wetness detection system was developed and tested using color imaging of a reference surface and a convolutional neural network (CNN), which is one of the artificial-intelligence-based learning methods. The system was placed at two separate field locations during the 2021-2022 strawberry-growing season. The results from the developed system were compared against manual observation to determine the accuracy of the system. It was found that the AI- and imaging-based system had high accuracy in detecting wetness on a reference surface. The developed system can be used in SAS for determining accurate disease risks and fungicide recommendations for strawberry production and allows the expansion of the system to multiple locations.


Assuntos
Aprendizado Profundo , Fragaria , Fungicidas Industriais , Água , Folhas de Planta
16.
Pest Manag Sci ; 78(8): 3416-3423, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35544358

RESUMO

BACKGROUND: The effectiveness of metam potassium, 1,3-dichloropropene, chloropicrin, and different ratios of 1,3-dichloropropene and chloropicrin on the reduction of natural and artificial inoculum of Macrophomina phaseolina were investigated in laboratory and field experiments. Additionally, a multivariate meta-analysis with data from six field trials conducted in Florida from 2012 to 2018 was performed. RESULTS: In small-plot field experiments using drip stakes, the highest rate (468 L ha-1 ) of metam potassium was most effective in controlling M. phaseolina in infected crowns buried at 15.2 cm from the point of fumigant injection, whereas none of the rates was able to reduce inoculum buried at 30.5 cm. In closed-container experiments, use of the highest rate of 1,3-dichloropropene (168 kg ha-1 ) resulted in the highest level of pathogen control. Different rates of chloropicrin also reduced inoculum when compared to the non-treated control. 1,3-dichloropropene + chloropicrin at different ratios were also highly effective in controlling M. phaseolina. Results from the meta-analysis of open-field experiments indicated that metam potassium and 1,3-dichloropropene + chloropicrin (63:35, v:v) treatments were significantly more effective in reducing M. phaseolina than the 1,3-dichloropropene + chloropicrin (39:60, v:v) treatment; however, metam potassium was not as effective at the side of the beds. CONCLUSION: 1,3-dichloropropene alone and in mixture with chloropicrin were more effective in reducing inoculum of M. phaseolina than chloropicrin alone, indicating the fungicidal efficacy of 1,3-dichloropropene. Formulation with higher 1,3-dichloropropene concentration performed better than the formulation with higher chloropicrin concentration in field trials. Metam potassium was effective when applied at the highest rate, but with limited lateral movement perpendicular to the drip irrigation line. © 2022 Society of Chemical Industry.


Assuntos
Fragaria , Fungicidas Industriais , Hidrocarbonetos Clorados , Praguicidas , Compostos Alílicos , Ascomicetos , Fumigação , Fungicidas Industriais/farmacologia , Hidrocarbonetos Clorados/farmacologia , Potássio
17.
Plant Dis ; 106(8): 2053-2059, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35285270

RESUMO

Colletotrichum acutatum is a species complex that causes anthracnose fruit rot and root necrosis on strawberry. The major and minor species within the complex that affect strawberry production are C. nymphaeae and C. fioriniae, respectively. The disease can significantly reduce yield under conducive weather, and its management has greatly relied on quinone-outside inhibitor fungicides (QoI). However, due to the emergence of resistant isolates, such products are no longer effective. Therefore, alternative fungicides were investigated. C. nymphaeae and C. fioriniae isolates were collected from multiple strawberry fields in the United States from 1995 to 2017. The sensitivity of benzovindiflupyr, penthiopyrad, pydiflumetofen, fluazinam, fludioxonil, and cyprodinil was assessed by in vitro and in vivo assays. Both Colletotrichum species were sensitive to benzovindiflupyr, penthiopyrad, fluazinam, and fludioxonil based on mycelial growth assays. Interestingly, of these products, only penthiopyrad did not inhibit conidial germination at 100 µg/ml. For cyprodinil, C. nymphaeae was sensitive based on the mycelial growth, whereas C. fioriniae was not inhibited. Neither species was inhibited by pydiflumetofen in mycelial growth, conidial germination, nor detached fruit assays. The prepackaged mixtures fludioxonil + cyprodinil and fludioxonil + pydiflumetofen were effective in a field trial; however, their use should be carefully considered because of the lack of efficacy of one of the compounds in the mixture. This study sheds light on the potential registration of products alternative to QoIs, such as benzovindiflupyr and fluazinam, which could improve the management of strawberry anthracnose.


Assuntos
Colletotrichum , Fragaria , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle , Quinonas/farmacologia , Estrobilurinas/farmacologia , Estados Unidos
18.
Plant Dis ; 106(9): 2455-2461, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35224988

RESUMO

Strawberry powdery mildew, caused by Podosphaera aphanis, can be particularly destructive in glasshouse and plastic tunnel production systems, which generally are constructed of materials that block ultraviolet (UV) solar radiation (about 280 to 400 nm). We compared epidemic progress in replicated plots in open fields and under tunnels constructed of polyethylene, which blocks nearly all solar UV-B, and two formulations of ethylene tetrafluoroethylene (ETFE), one of which contained a UV blocker and another that transmitted nearly 90% of solar UV-B. Disease severity under all plastics was higher than in open-field plots, indicating a generally more favorable environment in containment structures. However, the foliar severity of powdery mildew within the tunnels was inversely related to their UV transmissibility. Among the tunnels tested, incidence of fruit infection was highest under polyethylene and lowest under UV-transmitting ETFE. These effects probably transcend crop, and the blocking of solar UV transmission by glass and certain plastics probably contributes to the widely observed favorability of greenhouse and high-tunnel growing systems for powdery mildew.


Assuntos
Fragaria , Frutas , Plásticos , Polietilenos
19.
Plant Dis ; 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35166560

RESUMO

During the fall of 2020 and summer of 2021, symptoms of leaf rust were observed on blackberry plants of 'Kiowa', and breeding line 1734 (progeny of 'Natchez' and Arapaho') in a field trial at the University of Florida, Wimauma, FL. Symptoms consisted of small chlorotic spots (1 to 3 mm) on the upper side of the leaf, while the underside had yellow-orange pustules. Disease incidence was up to 100% on both 'Kiowa' and the breeding line 1734, and severity was up to 20% with most of the symptoms observed on older leaves. Two isolates were collected from 'Kiowa' and one from the breeding line 1734 for further investigation. Isolates were maintained and multiplied on healthy 'Kiowa' plants in growth chambers (25 ºC and 12-12 h photoperiod). Uredinia (n=30) were erumpent and ranged from 90 to 320 µm (Average=285 µm, SD=5.3 µm) in diameter. Urediniospores (n=50) were obovoid, yellow, and ranged from 24 to 36 µm long (Average=32 µm, SD=3.2 µm) and 22 to 30 µm wide (Average=28 µm, SD=2.5 µm). Based on morphology and literature, the pathogen was tentatively identified as Kuehneola uredinis (Link) Arth (Arthur 1906; Shands et al., 2018). Spores from a single uredinium of each isolate were collected with a needle and suspended in 50 µL of molecular biology-grade water yielding a final concentration of approximately 5 x 104 spores/mL. Two µL of each spore suspension was used for the PCR reactions. Two DNA fragments were amplified using the primers Rust2inv and LR6, and Rust18S-R and NS1 for the 5.8S-ITS2-28S gene region of rDNA (1,755 bp) and partial 18S gene region of rDNA (2,684 bp), respectively. The amplified products of the partial 28S gene region were sequenced with the primers LR3 and LR0R, and the 18S gene region with NS5, NS6, and NS4 (Aime 2006). DNA sequences were deposited in GenBank (accession nos. OK509845 - OK509848). BLASTn searches revealed that the isolates were 100% identical to K. uredinis reported causing leaf rust on blackberry in California (1044/1044bp, and 1540/1540bp for accession numbers MF158087, and MF158088, respectively). To test for pathogenicity, blackberry cultivars Kiowa, Natchez, Osage, Ouachita, Ponca, Prime-Ark® 45, Prime-Ark® Freedom, Prime-Ark® Traveler, and Prime-Ark® Horizon were inoculated. Five plants of each cultivar were inoculated with a mixture of spores of the three isolates, and two plants of each cultivar were used as controls. Spores were washed from leaves of 'Kiowa' exhibiting sporulation using a suspension of 1% Tween 20 in deionized water. The final concentration of the inoculum was adjusted to 104 spores/mL. Plants were inoculated in the greenhouse with a spray bottle until run-off and kept inside clear plastic boxes for 48 h. Controls were sprayed with sterile deionized water. Plants were watered by mists of 3 s every 10 min twice a week. Disease incidence and severity were evaluated weekly on five leaves per plant that had been tagged before inoculation. The experiment was repeated once. Symptoms identical to the original were only observed in 'Kiowa' and 'Prime-Ark® Freedom'. One week after inoculation, disease incidence was already 100% in both cultivars, with at least one pustule on all the inoculated leaves, and six weeks later disease severity was up to 50% (Average= 35%, SD=2.4%). To our knowledge, this is the first report of K. uredinis causing leaf rust on blackberry in Florida. This disease was reported on Rubus spp. in several U.S. states, and recently in California on Rubus ursinus (Farr and Rossman 2021; Shands et al. 2018). Blackberry is an emerging crop in Florida and efforts should be implemented to monitor the occurrence and spread of leaf rust considering that urediniospores disperse long distances by wind, especially if growers choose the susceptible cultivars 'Kiowa' and 'Prime-Ark Freedom'. The apparent resistance observed in other commercial cultivars such as 'Osage', 'Ouachita', and 'Ponca' may serve as valuable breeding parents for developing new blackberry cultivars with resistance to leaf rust.

20.
Plant Dis ; 106(7): 1929-1934, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34978865

RESUMO

Aphelenchoides besseyi and A. pseudogoodeyi are foliar nematodes associated with commercial strawberry production in Florida, United States. The reproductive and feeding habits of these two nematode species were assessed on Florida isolates of the fungi Botrytis cinerea, Colletotrichum gloeosporioides, Macrophomina phaseolina, and Neopestalotiopsis rosae, which are pathogenic to strawberry, and nonpathogenic isolates of Fusarium oxysporum and Monilinia fructicola grown on potato dextrose agar in Petri dishes. Each culture was inoculated with six specimens of mixed life stages of A. besseyi or A. pseudogoodeyi and incubated at 24°C under axenic and nonaxenic conditions 23 and 31 days after inoculation, respectively. A. besseyi reproduction rates were greater on strawberry-pathogenic isolates of B. cinerea, C. gloeosporioides, and N. rosae than on the nonpathogenic isolates of F. oxysporum and M. fructicola. In contrast, reproductive rates of A. pseudogoodeyi did not vary among fungi cultures. For both nematode species, M. phaseolina was a poor host because it did not produce mycelium on the media used. Our findings indicate that A. besseyi is more selective in its fungal-feeding preference than A. pseudogoodeyi. Additionally, A. pseudogoodeyi eggs and juveniles were significantly more numerous than adults. Yet, for A. besseyi, adult stages were more abundant. Fungi aid in the maintenance of soil-dwelling populations of these two nematode species. Removing fungus-infected strawberry plant residues is both a desirable and effective management practice to limit A. besseyi in central Florida commercial strawberry fields.


Assuntos
Fragaria , Nematoides , Tylenchida , Animais , Florida , Fragaria/microbiologia , Doenças das Plantas/microbiologia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...