Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(28): 32608-32617, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35802070

RESUMO

We investigated the near-field distribution associated to the photonic mode of terahertz photonic micro-resonators by scattering scanning near-field optical microscopy. Probing individual THz micro-resonators concentrating electric fields is important for high-sensitivity chemical and biochemical sensing and fundamental light-matter interactions studies at the nanoscale. We imaged both electric field concentration predicted by numerical simulations and unexpected patterns that deviate from intuitive assumptions. We propose a scenario based on the combination of the near-field with the far-field pattern of the probe/resonator ensemble that is in excellent agreement with the experimental data and propose an image analysis procedure to recover the near-field of such structures.

2.
Phys Chem Chem Phys ; 24(10): 6107-6125, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35212691

RESUMO

The nanoscale structure of molecular assemblies plays a major role in many (µ)-biological mechanisms. Molecular crystals are one of the most simple of these assemblies and are widely used in a variety of applications from pharmaceuticals and agrochemicals, to nutraceuticals and cosmetics. The collective vibrations in such molecular crystals can be probed using terahertz spectroscopy, providing unique characteristic spectral fingerprints. However, the association of the spectral features to the crystal conformation, crystal phase and its environment is a difficult task. We present a combined computational-experimental study on the incorporation of water in lactose molecular crystals, and show how simulations can be used to associate spectral features in the THz region to crystal conformations and phases. Using periodic DFT simulations of lactose molecular crystals, the role of water in the observed lactose THz spectrum is clarified, presenting both direct and indirect contributions. A specific experimental setup is built to allow the controlled heating and corresponding dehydration of the sample, providing the monitoring of the crystal phase transformation dynamics. Besides the observation that lactose phases and phase transformation appear to be more complex than previously thought - including several crystal forms in a single phase and a non-negligible water content in the so-called anhydrous phase - we draw two main conclusions from this study. Firstly, THz modes are spread over more than one molecule and require periodic computation rather than a gas-phase one. Secondly, hydration water does not only play a perturbative role but also participates in the facilitation of the THz vibrations.


Assuntos
Espectroscopia Terahertz , Vibração , Conformação Molecular , Espectroscopia Terahertz/métodos , Água/química
3.
Opt Express ; 21 Suppl 3: A515-27, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24104440

RESUMO

In this paper, we present the design, analysis, and experimental results on the integration of 2D photonic crystals in thin film photovoltaic solar cells based on hydrogenated amorphous silicon. We introduce an analytical approach based on time domain coupled mode theory to investigate the impact of the photon lifetime and anisotropy of the optical resonances on the absorption efficiency. Specific design rules are derived from this analysis. We also show that, due to the specific properties of the photonic crystal resonances, the angular acceptance of such solar cells is particularly high. Rigorous Coupled Wave Analysis simulations show that the absorption in the a-Si:H active layers, integrated from 300 to 750 nm, is only decreased from 65.7% to 60% while the incidence angle is increased from 0 to 55°. Experimental results confirm the stability of the incident light absorption in the patterned stack, for angles of incidence up to 50°.

4.
Opt Express ; 21(17): 20015-22, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-24105548

RESUMO

New photonic microstructures are proposed for an efficient light trapping in low index media. Cylindrical hollow cavities formed by bending a photonic crystal membrane are designed. Using numerical simulations, strong confinement of photons is demonstrated for very open resonators. The resulting strong light matter interaction can be exploited in optical devices comprising an active material embedded in a low index matrix like polymer or even gaz.

5.
Opt Express ; 20 Suppl 5: A560-71, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23037523

RESUMO

In this paper, we present the integration of combined front and back 1D and 2D diffraction gratings with different periods, within thin film photovoltaic solar cells based on crystalline silicon layers. The grating structures have been designed considering both the need for incident light absorption enhancement and the technological feasibility. Long wavelength absorption is increased thanks to the long period (750 nm) back grating, while the incident light reflection is reduced by using a short period (250 nm) front grating. The simulated short circuit current in a solar cell combining a front and a back grating structures with a 1.2 µm thick c-Si layer, together with the back electrode and TCO layers, is increased up to 30.3 mA/cm2, compared to 18.4 mA/cm2 for a reference stack, as simulated using the AM1.5G solar spectrum intensity distribution from 300 nm to 1100 nm, and under normal incidence.

6.
Appl Opt ; 48(31): G119-24, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19881631

RESUMO

A new route was recently proposed to modify some spectroscopic properties of rare-earth ions in silica-based fibers. We had shown the incorporation of erbium ions in amorphous dielectric nanoparticles, grown in fiber preforms. Here we present the achieved stabilization of nanometric erbium-doped dielectric nanoparticles within the core of silica fibers. We present the nanoparticle dimensional characterization in fiber samples. We also show the spectroscopic characterization of erbium in preform samples with similar nanoparticle size and composition. This new route could have important potentials in improving rare-earth-doped fiber amplifiers and laser sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...