Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 90(20): 205003, 2003 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-12785903

RESUMO

The existence of an anomalous particle pinch in magnetized tokamak plasmas is still questioned. Contradictory observations have been collected so far in tokamaks. Clear experimental evidence that density peaking in tokamak plasmas drops with increasing collisionality is provided for the first time. This phenomenon is explained by means of existing theoretical models based on the fluid description of drift wave instabilities, provided that such models include the dissipative effects introduced by collisions on the mentioned instabilities. These results reconcile the apparent contradictions found so far in the experiments.

2.
Phys Rev Lett ; 87(8): 085002, 2001 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-11497949

RESUMO

In the ASDEX Upgrade tokamak, high poloidal beta up to beta(pol) = 3 at the Greenwald density with H-mode confinement has been reached. Because of the high beta, the plasma current is driven almost fully noninductively, consisting of 51% bootstrap and 43% neutral beam driven current. To reach these conditions the discharge is operated at low plasma current ( I(P) = 400 kA) and high neutral beam heating power ( P(NBI) = 10 MW). The discharge combines an edge (H mode) and internal transport barrier at high densities without confinement-limiting MHD activities. The extrapolation to higher plasma currents may offer a promising way for an advanced scenario based fusion reactor.

3.
Phys Rev Lett ; 86(11): 2325-8, 2001 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-11289920

RESUMO

Energy transport by the electrons in a tokamak is examined in steady-state and power modulation experiments using electron cyclotron heating. The results are consistent with the assumption that temperature profiles are limited by a critical gradient length, leading to "stiff" profiles. The modulation experiments show that the stiffness factor increases with temperature. They strongly suggest that turbulence driven by the electron temperature gradient may be a dominant mechanism of electron transport. Although possibly not universal, these results are valid under various plasma conditions.

4.
Phys Rev Lett ; 84(14): 3097-100, 2000 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-11019021

RESUMO

Internal transport barriers have been demonstrated to exist also under conditions with T(e) approximately T(i) approximately 10 keV and predominant electron heating of the tokamak core region. Central electron cyclotron heating was added to neutral beam injection-heated ASDEX Upgrade discharges with a preexisting internal transport barrier, established through programmed current ramping leading to shear reversal. Compared to a reference internal transport barrier discharge without electron cyclotron resonance heating, the electron heat conductivity in the barrier region was found not to increase, in spite of a fivefold increase in electron heat flux, and also angular momentum and ion energy transport did not deteriorate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...