Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 71(12): 2782-2798, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37539655

RESUMO

Traumatic spinal cord injury (SCI) induces irreversible autonomic and sensory-motor impairments. A large number of patients exhibit chronic SCI and no curative treatment is currently available. Microglia are predominant immune players after SCI, they undergo highly dynamic processes, including proliferation and morphological modification. In a translational aim, we investigated whether microglia proliferation persists at chronic stage after spinal cord hemisection and whether a brief pharmacological treatment could modulate microglial responses. We first carried out a time course analysis of SCI-induced microglia proliferation associated with morphological analysis up to 84 days post-injury (dpi). Second, we analyzed outcomes on microglia of an oral administration of GW2580, a colony stimulating factor-1 receptor tyrosine kinase inhibitor reducing selectively microglia proliferation. After SCI, microglia proliferation remains elevated at 84 dpi. The percentage of proliferative microglia relative to proliferative cells increases over time reaching almost 50% at 84 dpi. Morphological modifications of microglia processes are observed up to 84 dpi and microglia cell body area is transiently increased up to 42 dpi. A transient post-injury GW2580-delivery at two chronic stages after SCI (42 and 84 dpi) reduces microglia proliferation and modifies microglial morphology evoking an overall limitation of secondary inflammation. Finally, transient GW2580-delivery at chronic stage after SCI modulates myelination processes. Together our study shows that there is a persistent microglia proliferation induced by SCI and that a pharmacological treatment at chronic stage after SCI modulates microglial responses. Thus, a transient oral GW2580-delivery at chronic stage after injury may provide a promising therapeutic strategy for chronic SCI patients.

2.
Cells ; 12(4)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36831195

RESUMO

Spinal cord injury (SCI) leads to persistent neurological deficits without available curative treatment. After SCI astrocytes within the lesion vicinity become reactive, these undergo major morphological, and molecular transformations. Previously, we reported that following SCI, over 10% of resident astrocytes surrounding the lesion spontaneously transdifferentiate towards a neuronal phenotype. Moreover, this conversion is associated with an increased expression of fibroblast growth factor receptor 4 (Fgfr4), a neural stem cell marker, in astrocytes. Here, we evaluate the therapeutic potential of gene therapy upon Fgfr4 over-expression in mature astrocytes following SCI in adult mice. We found that Fgfr4 over-expression in astrocytes immediately after SCI improves motor function recovery; however, it may display sexual dimorphism. Improved functional recovery is associated with a decrease in spinal cord lesion volume and reduced glial reactivity. Cell-specific transcriptomic profiling revealed concomitant downregulation of Notch signaling, and up-regulation of neurogenic pathways in converting astrocytes. Our findings suggest that gene therapy targeting Fgfr4 over-expression in astrocytes after injury is a feasible therapeutic approach to improve recovery following traumatism of the spinal cord. Moreover, we stress that a sex-dependent response to astrocytic modulation should be considered for the development of effective translational strategies in other neurological disorders.


Assuntos
Astrócitos , Traumatismos da Medula Espinal , Camundongos , Animais , Regulação para Cima , Astrócitos/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Traumatismos da Medula Espinal/terapia
3.
Front Aging Neurosci ; 13: 769548, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899275

RESUMO

The glial scar that forms after traumatic spinal cord injury (SCI) is mostly composed of microglia, NG2 glia, and astrocytes and plays dual roles in pathophysiological processes induced by the injury. On one hand, the glial scar acts as a chemical and physical obstacle to spontaneous axonal regeneration, thus preventing functional recovery, and, on the other hand, it partly limits lesion extension. The complex activation pattern of glial cells is associated with cellular and molecular crosstalk and interactions with immune cells. Interestingly, response to SCI is diverse among species: from amphibians and fishes that display rather limited (if any) glial scarring to mammals that exhibit a well-identifiable scar. Additionally, kinetics of glial activation varies among species. In rodents, microglia become activated before astrocytes, and both glial cell populations undergo activation processes reflected amongst others by proliferation and migration toward the injury site. In primates, glial cell activation is delayed as compared to rodents. Here, we compare the spatial and temporal diversity of the glial response, following SCI amongst species. A better understanding of mechanisms underlying glial activation and scar formation is a prerequisite to develop timely glial cell-specific therapeutic strategies that aim to increase functional recovery.

4.
Theranostics ; 11(18): 8640-8659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522204

RESUMO

No curative treatment is available for any deficits induced by spinal cord injury (SCI). Following injury, microglia undergo highly diverse activation processes, including proliferation, and play a critical role on functional recovery. In a translational objective, we investigated whether a transient pharmacological reduction of microglia proliferation after injury is beneficial for functional recovery after SCI in mice and nonhuman primates. Methods: The colony stimulating factor-1 receptor (CSF1R) regulates proliferation, differentiation, and survival of microglia. We orally administrated GW2580, a CSF1R inhibitor that inhibits microglia proliferation. In mice and nonhuman primates, we then analyzed treatment outcomes on locomotor function and spinal cord pathology. Finally, we used cell-specific transcriptomic analysis to uncover GW2580-induced molecular changes in microglia. Results: First, transient post-injury GW2580 administration in mice improves motor function recovery, promotes tissue preservation and/or reorganization (identified by coherent anti-stokes Raman scattering microscopy), and modulates glial reactivity. Second, post-injury GW2580-treatment in nonhuman primates reduces microglia proliferation, improves motor function recovery, and promotes tissue protection. Finally, GW2580-treatment in mice induced down-regulation of proliferation-associated transcripts and inflammatory associated genes in microglia that may account for reduced neuroinflammation and improved functional recovery following SCI. Conclusion: Thus, a transient oral GW2580 treatment post-injury may provide a promising therapeutic strategy for SCI patients and may also be extended to other central nervous system disorders displaying microglia activation.


Assuntos
Microglia/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Animais , Anisóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Cheirogaleidae , Modelos Animais de Doenças , Expressão Gênica/genética , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Neurogênese , Doenças Neuroinflamatórias , Pirimidinas/farmacologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...