Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202574

RESUMO

Due to recent advances in nanotechnology, the application of nanoparticles (NPs) in cancer therapy has become a leading area in cancer research. Despite the importance of cancer-associated fibroblasts (CAFs) in creating an optimal niche for tumor cells to grow extensively, most of the work has been focused on tumor cells. Therefore, to effectively use NPs for therapeutic purposes, it is important to elucidate the extent of NP uptake and retention in tumor cells and CAFs. Three tumor cell lines and three CAF cell lines were studied using gold NPs (GNPs) as a model NP system. We found a seven-fold increase in NP uptake in CAFs compared to tumor cells. The retention percentage of NPs was three-fold higher in tumor cells as compared to CAFs. Furthermore, NP uptake and retention were significantly enhanced using a 50 nM concentration of docetaxel (DTX). NP uptake was improved by a factor of three in tumor cells and a factor of two in CAFs, while the retention of NPs was two-fold higher in tumor cells compared to CAFs, 72 h post-treatment with DTX. However, the quantity of NPs in CAFs was still three-fold higher compared to tumor cells. Our quantitative data were supported by qualitative imaging data. We believe that targeting of NPs in the presence of DTX is a very promising approach to accumulate a higher percentage of NPs and maintain a longer retention in both tumor cells and CAFs for achieving the full therapeutic potential of cancer nanotechnology.

2.
Cancers (Basel) ; 13(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806801

RESUMO

Radiotherapy and chemotherapy are the gold standard for treating patients with cancer in the clinic but, despite modern advances, are limited by normal tissue toxicity. The use of nanomaterials, such as gold nanoparticles (GNPs), to improve radiosensitivity and act as drug delivery systems can mitigate toxicity while increasing deposited tumor dose. To expedite a quicker clinical translation, three-dimensional (3D) tumor spheroid models that can better approximate the tumor environment compared to a two-dimensional (2D) monolayer model have been used. We tested the uptake of 15 nm GNPs and 50 nm GNPs on a monolayer and on spheroids of two cancer cell lines, CAL-27 and HeLa, to evaluate the differences between a 2D and 3D model in similar conditions. The anticancer drug docetaxel (DTX) which can act as a radiosensitizer, was also utilized, informing future potential of GNP-mediated combined therapeutics. In the 2D monolayer model, the addition of DTX induced a small, non-significant increase of uptake of GNPs of between 13% and 24%, while in the 3D spheroid model, DTX increased uptake by between 47% and 186%, with CAL-27 having a much larger increase relative to HeLa. Further, the depth of penetration of 15 nm GNPs over 50 nm GNPs increased by 33% for CAL-27 spheroids and 17% for HeLa spheroids. These results highlight the necessity to optimize GNP treatment conditions in a more realistic tumor-life environment. A 3D spheroid model can capture important details, such as different packing densities from different cancer cell lines, which are absent from a simple 2D monolayer model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...