Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 28(7): 1323-1334.e8, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33945794

RESUMO

Intramuscular fatty deposits, which are seen in muscular dystrophies and with aging, negatively affect muscle function. The cells of origin of adipocytes constituting these fatty deposits are mesenchymal stromal cells, fibroadipogenic progenitors (FAPs). We uncover a molecular fate switch, involving miR-206 and the transcription factor Runx1, that controls FAP differentiation to adipocytes. Mice deficient in miR-206 exhibit increased adipogenesis following muscle injury. Adipogenic differentiation of FAPs is abrogated by miR-206 mimics. Using a labeled microRNA (miRNA) pull-down and sequencing (LAMP-seq), we identified Runx1 as a miR-206 target, with miR-206 repressing Runx1 translation. In the absence of miR-206 in FAPs, Runx1 occupancy near transcriptional start sites of adipogenic genes and expression of these genes increase. We demonstrate that miR-206 mimicry in vivo limits intramuscular fatty infiltration. Our results provide insight into the underlying molecular mechanisms of FAP fate determination and formation of harmful fatty deposits in skeletal muscle.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Adipócitos , Adipogenia/genética , Animais , Diferenciação Celular , Camundongos , MicroRNAs/genética , Músculo Esquelético
2.
Cell Rep ; 27(7): 2029-2035.e5, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091443

RESUMO

The necessity of mesenchymal stromal cells, called fibroadipogenic progenitors (FAPs), in skeletal muscle regeneration and maintenance remains unestablished. We report the generation of a PDGFRαCreER knockin mouse model that provides a specific means of labeling and targeting FAPs. Depletion of FAPs using Cre-dependent diphtheria toxin expression results in loss of expansion of muscle stem cells (MuSCs) and CD45+ hematopoietic cells after injury and impaired skeletal muscle regeneration. Furthermore, FAP-depleted mice under homeostatic conditions exhibit muscle atrophy and loss of MuSCs, revealing that FAPs are required for the maintenance of both skeletal muscle and the MuSC pool. We also report that local tamoxifen metabolite delivery to target CreER activity in a single muscle, removing potentially confounding systemic effects of ablating PDGFRα+ cells distantly, also causes muscle atrophy. These data establish a critical role of FAPs in skeletal muscle regeneration and maintenance.


Assuntos
Homeostase , Células-Tronco Mesenquimais/metabolismo , Desenvolvimento Muscular , Regeneração , Células 3T3 , Animais , Camundongos , Camundongos Transgênicos , Músculo Esquelético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA