Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Semantics ; 13(1): 2, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35045882

RESUMO

BACKGROUND: Melanoma is one of the least common but the deadliest of skin cancers. This cancer begins when the genes of a cell suffer damage or fail, and identifying the genes involved in melanoma is crucial for understanding the melanoma tumorigenesis. Thousands of publications about human melanoma appear every year. However, while biological curation of data is costly and time-consuming, to date the application of machine learning for gene-melanoma relation extraction from text has been severely limited by the lack of annotated resources. RESULTS: To overcome this lack of resources for melanoma, we have exploited the information of the Melanoma Gene Database (MGDB, a manually curated database of genes involved in human melanoma) to automatically build an annotated dataset of binary relations between gene and melanoma entities occurring in PubMed abstracts. The entities were automatically annotated by state-of-the-art text-mining tools. Their annotation includes both the mention text spans and normalized concept identifiers. The relations among the entities were annotated at concept- and mention-level. The concept-level annotation was produced using the information of the genes in MGDB to decide if a relation holds between a gene and melanoma concept in the whole abstract. The exploitability of this dataset was tested with both traditional machine learning, and neural network-based models like BERT. The models were then used to automatically extract gene-melanoma relations from the biomedical literature. Most of the current models use context-aware representations of the target entities to establish relations between them. To facilitate researchers in their experiments we generated a mention-level annotation in support to the concept-level annotation. The mention-level annotation was generated by automatically linking gene and melanoma mentions co-occurring within the sentences that in MGDB establish the association of the gene with melanoma. CONCLUSIONS: This paper presents a corpus containing gene-melanoma annotated relations. Additionally, it discusses experiments which show the usefulness of such a corpus for training a system capable of mining gene-melanoma relationships from the literature. Researchers can use the corpus to develop and compare their own models, and produce results which might be integrated with existing structured knowledge databases, which in turn might facilitate medical research.


Assuntos
Mineração de Dados , Melanoma , Bases de Dados Factuais , Humanos , Melanoma/genética , PubMed , Publicações
2.
BMC Bioinformatics ; 22(1): 412, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418954

RESUMO

BACKGROUND: Drug-drug interactions (DDIs) refer to processes triggered by the administration of two or more drugs leading to side effects beyond those observed when drugs are administered by themselves. Due to the massive number of possible drug pairs, it is nearly impossible to experimentally test all combinations and discover previously unobserved side effects. Therefore, machine learning based methods are being used to address this issue. METHODS: We propose a Siamese self-attention multi-modal neural network for DDI prediction that integrates multiple drug similarity measures that have been derived from a comparison of drug characteristics including drug targets, pathways and gene expression profiles. RESULTS: Our proposed DDI prediction model provides multiple advantages: (1) It is trained end-to-end, overcoming limitations of models composed of multiple separate steps, (2) it offers model explainability via an Attention mechanism for identifying salient input features and (3) it achieves similar or better prediction performance (AUPR scores ranging from 0.77 to 0.92) compared to state-of-the-art DDI models when tested on various benchmark datasets. Novel DDI predictions are further validated using independent data resources. CONCLUSIONS: We find that a Siamese multi-modal neural network is able to accurately predict DDIs and that an Attention mechanism, typically used in the Natural Language Processing domain, can be beneficially applied to aid in DDI model explainability.


Assuntos
Aprendizado Profundo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Preparações Farmacêuticas , Interações Medicamentosas , Humanos , Redes Neurais de Computação
3.
Front Med (Lausanne) ; 8: 607594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307391

RESUMO

The continued digitalization of medicine has led to an increased availability of longitudinal patient data that allows the investigation of novel and known diseases in unprecedented detail. However, to accurately describe any underlying pathophysiology and allow inter-patient comparisons, individual patient trajectories have to be synchronized based on temporal markers. In this pilot study, we use longitudinal data from critically ill ICU COVID-19 patients to compare the commonly used alignment markers "onset of symptoms," "hospital admission," and "ICU admission" with a novel objective method based on the peak value of the inflammatory marker C-reactive protein (CRP). By applying our CRP-based method to align the progression of neutrophils and lymphocytes, we were able to define a pathophysiological window that improved mortality risk stratification in our COVID-19 patient cohort. Our data highlights that proper synchronization of longitudinal patient data is crucial for accurate interpatient comparisons and the definition of relevant subgroups. The use of objective temporal disease markers will facilitate both translational research efforts and multicenter trials.

4.
J Cell Biol ; 218(12): 4093-4111, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31690619

RESUMO

Cells migrate in vivo through complex confining microenvironments, which induce significant nuclear deformation that may lead to nuclear blebbing and nuclear envelope rupture. While actomyosin contractility has been implicated in regulating nuclear envelope integrity, the exact mechanism remains unknown. Here, we argue that confinement-induced activation of RhoA/myosin-II contractility, coupled with LINC complex-dependent nuclear anchoring at the cell posterior, locally increases cytoplasmic pressure and promotes passive influx of cytoplasmic constituents into the nucleus without altering nuclear efflux. Elevated nuclear influx is accompanied by nuclear volume expansion, blebbing, and rupture, ultimately resulting in reduced cell motility. Moreover, inhibition of nuclear efflux is sufficient to increase nuclear volume and blebbing on two-dimensional surfaces, and acts synergistically with RhoA/myosin-II contractility to further augment blebbing in confinement. Cumulatively, confinement regulates nuclear size, nuclear integrity, and cell motility by perturbing nuclear flux homeostasis via a RhoA-dependent pathway.


Assuntos
Miosina Tipo II/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Transferência Ressonante de Energia de Fluorescência , Homeostase , Humanos , Membrana Nuclear/metabolismo , Microambiente Tumoral
5.
J Cell Biol ; 218(10): 3472-3488, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31481532

RESUMO

How mammalian cells regulate their physical size is currently poorly understood, in part due to the difficulty in accurately quantifying cell volume in a high-throughput manner. Here, using the fluorescence exclusion method, we demonstrate that the mechanosensitive transcriptional regulators YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif) are regulators of single-cell volume. The role of YAP/TAZ in volume regulation must go beyond its influence on total cell cycle duration or cell shape to explain the observed changes in volume. Moreover, for our experimental conditions, volume regulation by YAP/TAZ is independent of mTOR. Instead, we find that YAP/TAZ directly impacts the cell division volume, and YAP is involved in regulating intracellular cytoplasmic pressure. Based on the idea that YAP/TAZ is a mechanosensor, we find that inhibiting myosin assembly and cell tension slows cell cycle progression from G1 to S. These results suggest that YAP/TAZ may be modulating cell volume in combination with cytoskeletal tension during cell cycle progression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Tamanho Celular , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Ciclo Celular , Células Cultivadas , Citoesqueleto/metabolismo , Células HEK293 , Humanos , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
6.
Mol Biol Cell ; 29(21): 0, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30113884

RESUMO

Animal cells use an unknown mechanism to control their growth and physical size. Here, using the fluorescence exclusion method, we measure cell volume for adherent cells on substrates of varying stiffness. We discover that the cell volume has a complex dependence on substrate stiffness and is positively correlated with the size of the cell adhesion to the substrate. From a mechanical force-balance condition that determines the geometry of the cell surface, we find that the observed cell volume variation can be predicted quantitatively from the distribution of active myosin through the cell cortex. To connect cell mechanical tension with cell size homeostasis, we quantified the nuclear localization of YAP/TAZ, a transcription factor involved in cell growth and proliferation. We find that the level of nuclear YAP/TAZ is positively correlated with the average cell volume. Moreover, the level of nuclear YAP/TAZ is also connected to cell tension, as measured by the amount of phosphorylated myosin. Cells with greater apical tension tend to have higher levels of nuclear YAP/TAZ and a larger cell volume. These results point to a size-sensing mechanism based on mechanical tension: the cell tension increases as the cell grows, and increasing tension feeds back biochemically to growth and proliferation control.


Assuntos
Tamanho Celular , Células/citologia , Células 3T3 , Animais , Fenômenos Biomecânicos , Adesão Celular , Núcleo Celular/metabolismo , Proliferação de Células , Forma Celular , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Cadeias Leves de Miosina/metabolismo , Fosforilação , Transdução de Sinais , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...