Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(4): e0527922, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37284782

RESUMO

Quorum sensing (QS) is a means of bacterial communication accomplished by microbe-produced signals and sensory systems. QS systems regulate important population-wide behaviors in bacteria, including secondary metabolite production, swarming motility, and bioluminescence. The human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]) utilizes Rgg-SHP QS systems to regulate biofilm formation, protease production, and activation of cryptic competence pathways. Given their reliance on small-molecule signals, QS systems are attractive targets for small-molecule modulators that would then affect gene expression. In this study, a high-throughput luciferase assay was employed to screen an Actinobacteria-derived secondary metabolite (SM) fraction library to identify small molecule inhibitors of Rgg regulation. A metabolite produced by Streptomyces tendae D051 was found to be a general inhibitor of GAS Rgg-mediated QS. Herein, we describe the biological activity of this metabolite as a QS inhibitor. IMPORTANCE Streptococcus pyogenes, a human pathogen known for causing infections such as pharyngitis and necrotizing fasciitis, uses quorum sensing (QS) to regulate social responses in its environment. Previous studies have focused on disrupting QS as a means to control specific bacterial signaling outcomes. In this work, we identified and described the activity of a naturally derived S. pyogenes QS inhibitor. This study demonstrates that the inhibitor affects three separate but similar QS signaling pathways.


Assuntos
Percepção de Quorum , Streptomyces , Humanos , Percepção de Quorum/fisiologia , Streptococcus pyogenes/genética , Streptomyces/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética
3.
J Biol Chem ; 293(3): 931-940, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29203527

RESUMO

Bacteria produce chemical signals (pheromones) to coordinate behaviors across a population in a process termed quorum sensing (QS). QS systems comprising peptide pheromones and their corresponding Rgg receptors are widespread among Firmicutes and may be useful targets for manipulating microbial behaviors, like suppressing virulence. The Rgg2/3 QS circuit of the human pathogen Streptococcus pyogenes controls genes affecting resistance to host lysozyme in response to short hydrophobic pheromones (SHPs). Considering that artificial activation of a QS pathway may be as useful in the objective of manipulating bacteria as inhibiting it, we sought to identify small-molecule inducers of the Rgg2/3 QS system. We report the identification of a small molecule, P516-0475, that specifically induced expression of Rgg2/3-regulated genes in the presence of SHP pheromones at concentrations lower than typically required for QS induction. In searching for the mode of action of P516-0475, we discovered that an S. pyogenes mutant deficient in pepO, a neprilysin-like metalloendopeptidase that degrades SHP pheromones, was unresponsive to the compound. P516-0475 directly inhibited recombinant PepO in vitro as an uncompetitive inhibitor. We conclude that this compound induces QS by stabilizing SHP pheromones in culture. Our study indicates the usefulness of cell-based screens that modulate pathway activities to identify unanticipated therapeutic targets contributing to QS signaling.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Feromônios/metabolismo , Percepção de Quorum/fisiologia , Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Positivas/metabolismo , Neprilisina/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo
4.
J Bacteriol ; 195(14): 3244-51, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23687264

RESUMO

During the early stages of sporulation, a subpopulation of Bacillus subtilis cells secrete toxins that kill their genetically identical siblings in a process termed cannibalism. One of these toxins is encoded by the sdpC gene of the sdpABC operon. The active form of the SDP toxin is a 42-amino-acid peptide with a disulfide bond which is processed from an internal fragment of pro-SdpC. The factors required for the processing of pro-SdpC into mature SDP are not known. We provide evidence that pro-SdpC is secreted via the general secretory pathway and that signal peptide cleavage is a required step in the production of SDP. We also demonstrate that SdpAB are essential to produce mature SDP, which has toxin activity. Our data indicate that SdpAB are not required for secretion, translation, or stability of SdpC. Thus, SdpAB may participate in a posttranslation step in the production of SDP. The mature form of the SDP toxin contains a disulfide bond. Our data indicate that while the disulfide bond does increase activity of SDP, it is not essential for SDP activity. We demonstrate that the disulfide bond is formed independently of SdpAB. Taken together, our data suggest that SDP production is a multistep process and that SdpAB are required for SDP production likely by controlling, directly or indirectly, cleavage of SDP from the pro-SdpC precursor.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Processamento de Proteína Pós-Traducional , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...