Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000523

RESUMO

The dental implant surface plays a crucial role in osseointegration. The topography and physicochemical properties will affect the cellular functions. In this research, four distinct titanium surfaces have been studied: machined acting (MACH), acid etched (AE), grit blasting (GBLAST), and a combination of grit blasting and subsequent acid etching (GBLAST + AE). Human amniotic mesenchymal (hAMSCs) and epithelial stem cells (hAECs) isolated from the amniotic membrane have attractive stem-cell properties. They were cultured on titanium surfaces to analyze their impact on biological behavior. The surface roughness, microhardness, wettability, and surface energy were analyzed using interferometric microscopy, Vickers indentation, and drop-sessile techniques. The GBLAST and GBLAST + AE surfaces showed higher roughness, reduced hydrophilicity, and lower surface energy with significant differences. Increased microhardness values for GBLAST and GBLAST + AE implants were attributed to surface compression. Cell viability was higher for hAMSCs, particularly on GBLAST and GBLAST + AE surfaces. Alkaline phosphatase activity enhanced in hAMSCs cultured on GBLAST and GBLAST + AE surfaces, while hAECs showed no mineralization signals. Osteogenic gene expression was upregulated in hAMSCs on GBLAST surfaces. Moreover, α2 and ß1 integrin expression enhanced in hAMSCs, suggesting a surface-integrin interaction. Consequently, hAMSCs would tend toward osteoblastic differentiation on grit-blasted surfaces conducive to osseointegration, a phenomenon not observed in hAECs.


Assuntos
Âmnio , Implantes Dentários , Propriedades de Superfície , Titânio , Humanos , Titânio/química , Âmnio/citologia , Âmnio/metabolismo , Osteogênese , Diferenciação Celular , Células Cultivadas , Osseointegração , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Sobrevivência Celular , Fosfatase Alcalina/metabolismo
2.
ACS Appl Bio Mater ; 6(9): 3889-3901, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37608579

RESUMO

The incorporation of exogenous lactate into cardiac tissues is a regenerative strategy that is rapidly gaining attention. In this work, two polymeric platforms were designed to achieve a sustained release of lactate, combining immediate and prolonged release profiles. Both platforms contained electrospun poly(lactic acid) (PLA) fibers and an alginate (Alg) hydrogel. In the first platform, named L/K(x)/Alg-PLA, lactate and proteinase K (x mg of enzyme per 1 g of PLA) were directly loaded into the Alg hydrogel, into which PLA fibers were assembled. In the second platform, L/Alg-K(x)/PLA, fibers were produced by electrospinning a proteinase K:PLA solution and, subsequently, assembled within the lactate-loaded hydrogel. After characterizing the chemical, morphological, and mechanical properties of the systems, as well as their cytotoxicity, the release profiles of the two platforms were determined considering different amounts of proteinase K (x = 5.2, 26, and 52 mg of proteinase K per 1 g of PLA), which is known to exhibit a broad cleavage activity. The profiles obtained using L/Alg-K(x)/PLA platforms with x = 26 and 52 were the closest to the criteria that must be met for cardiac tissue regeneration. Finally, the amount of lactate directly loaded in the Alg hydrogel for immediate release and the amount of protein in the electrospinning solution were adapted to achieve a constant lactate release of around 6 mM per day over 1 or 2 weeks. In the optimized bioplatform, in which 6 mM lactate was loaded in the hydrogel, the amount of fibers was increased by a factor of ×3, the amount of enzyme was adjusted to 40 mg per 1 g of PLA, and a daily lactate release of 5.9 ± 2.7 mM over a period of 11 days was achieved. Accordingly, the engineered device fully satisfied the characteristics and requirements for heart tissue regeneration.


Assuntos
Hidrogéis , Ácido Láctico , Preparações de Ação Retardada/farmacologia , Endopeptidase K , Poliésteres , Alginatos
3.
ACS Appl Bio Mater ; 6(7): 2860-2874, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37342003

RESUMO

The low endogenous regenerative capacity of the heart, added to the prevalence of cardiovascular diseases, triggered the advent of cardiac tissue engineering in the last decades. The myocardial niche plays a critical role in directing the function and fate of cardiomyocytes; therefore, engineering a biomimetic scaffold holds excellent promise. We produced an electroconductive cardiac patch of bacterial nanocellulose (BC) with polypyrrole nanoparticles (Ppy NPs) to mimic the natural myocardial microenvironment. BC offers a 3D interconnected fiber structure with high flexibility, which is ideal for hosting Ppy nanoparticles. BC-Ppy composites were produced by decorating the network of BC fibers (65 ± 12 nm) with conductive Ppy nanoparticles (83 ± 8 nm). Ppy NPs effectively augment the conductivity, surface roughness, and thickness of BC composites despite reducing scaffolds' transparency. BC-Ppy composites were flexible (up to 10 mM Ppy), maintained their intricate 3D extracellular matrix-like mesh structure in all Ppy concentrations tested, and displayed electrical conductivities in the range of native cardiac tissue. Furthermore, these materials exhibit tensile strength, surface roughness, and wettability values appropriate for their final use as cardiac patches. In vitro experiments with cardiac fibroblasts and H9c2 cells confirmed the exceptional biocompatibility of BC-Ppy composites. BC-Ppy scaffolds improved cell viability and attachment, promoting a desirable cardiomyoblast morphology. Biochemical analyses revealed that H9c2 cells showed different cardiomyocyte phenotypes and distinct levels of maturity depending on the amount of Ppy in the substrate used. Specifically, the employment of BC-Ppy composites drives partial H9c2 differentiation toward a cardiomyocyte-like phenotype. The scaffolds increase the expression of functional cardiac markers in H9c2 cells, indicative of a higher differentiation efficiency, which is not observed with plain BC. Our results highlight the remarkable potential use of BC-Ppy scaffolds as a cardiac patch in tissue regenerative therapies.


Assuntos
Miócitos Cardíacos , Polímeros , Polímeros/química , Pirróis/química , Diferenciação Celular
4.
Biomacromolecules ; 24(10): 4408-4418, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36597885

RESUMO

The involvement of the extracellular matrix (ECM) in tumor progression has motivated the development of biomaterials mimicking the tumor ECM to develop more predictive cancer models. Particularly, polypeptides based on elastin could be an interesting approach to mimic the ECM due to their tunable properties. Here, we demonstrated that elastin-like recombinamer (ELR) hydrogels can be suitable biomaterials to develop breast cancer models. This hydrogel was formed by two ELR polypeptides, one containing sequences biodegradable by matrix metalloproteinase and cyclooctyne and the other carrying arginylglycylaspartic acid and azide groups to allow cell adhesion, biodegradability, and suitable stiffness through "click-chemistry" cross-linking. Our findings show that breast cancer or nontumorigenic breast cells showed high viability and cell proliferation for up to 7 days. MCF7 and MCF10A formed spheroids whereas MDA-MB-231 formed cell networks, with the expression of ECM and high drug resistance in all cases, evidencing that ELR hydrogels are a promising biomaterial for breast cancer modeling.


Assuntos
Neoplasias da Mama , Hidrogéis , Humanos , Feminino , Hidrogéis/farmacologia , Hidrogéis/química , Elastina/química , Neoplasias da Mama/tratamento farmacológico , Materiais Biocompatíveis , Peptídeos , Matriz Extracelular
5.
Acta Biomater ; 151: 264-277, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981686

RESUMO

Most of the conventional in vitro models to test biomaterial-driven vascularization are too simplistic to recapitulate the complex interactions taking place in the actual cell microenvironment, which results in a poor prediction of the in vivo performance of the material. However, during the last decade, cell culture models based on microfluidic technology have allowed attaining unprecedented levels of tissue biomimicry. In this work, we propose a microfluidic-based 3D model to evaluate the effect of bioactive biomaterials capable of releasing signaling cues (such as ions or proteins) in the recruitment of endogenous endothelial progenitor cells, a key step in the vascularization process. The usability of the platform is demonstrated using experimentally-validated finite element models and migration and proliferation studies with rat endothelial progenitor cells (rEPCs) and bone marrow-derived rat mesenchymal stromal cells (BM-rMSCs). As a proof of concept of biomaterial evaluation, the response of rEPCs to an electrospun composite made of polylactic acid with calcium phosphates nanoparticles (PLA+CaP) was compared in a co-culture microenvironment with BM-rMSC to a regular PLA control. Our results show a significantly higher rEPCs migration and the upregulation of several pro-inflammatory and proangiogenic proteins in the case of the PLA+CaP. The effects of osteopontin (OPN) on the rEPCs migratory response were also studied using this platform, suggesting its important role in mediating their recruitment to a calcium-rich microenvironment. This new tool could be applied to screen the capacity of a variety of bioactive scaffolds to induce vascularization and accelerate the preclinical testing of biomaterials. STATEMENT OF SIGNIFICANCE: For many years researchers have used neovascularization models to evaluate bioactive biomaterials both in vitro, with low predictive results due to their poor biomimicry and minimal control over cell cues such as spatiotemporal biomolecule signaling, and in vivo models, presenting drawbacks such as being highly costly, time-consuming, poor human extrapolation, and ethically controversial. We describe a compact microphysiological platform designed for the evaluation of proangiogenesis in biomaterials through the quantification of the level of sprouting in a mimicked endothelium able to react to gradients of biomaterial-released signals in a fibrin-based extracellular matrix. This model is a useful tool to perform preclinical trustworthy studies in tissue regeneration and to better understand the different elements involved in the complex process of vascularization.


Assuntos
Células Progenitoras Endoteliais , Animais , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Cálcio/metabolismo , Fosfatos de Cálcio/farmacologia , Fibrina/farmacologia , Humanos , Microfluídica , Neovascularização Fisiológica , Osteopontina/metabolismo , Poliésteres/farmacologia , Ratos , Engenharia Tecidual , Alicerces Teciduais
6.
Biomater Adv ; 139: 213035, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35907761

RESUMO

In situ tissue engineering strategies are a promising approach to activate the endogenous regenerative potential of the cardiac tissue helping the heart to heal itself after an injury. However, the current use of complex reprogramming vectors for the activation of reparative pathways challenges the easy translation of these therapies into the clinic. Here, we evaluated the response of mouse neonatal and human induced pluripotent stem cell-derived cardiomyocytes to the presence of exogenous lactate, thus mimicking the metabolic environment of the fetal heart. An increase in cardiomyocyte cell cycle activity was observed in the presence of lactate, as determined through Ki67 and Aurora-B kinase. Gene expression and RNA-sequencing data revealed that cardiomyocytes incubated with lactate showed upregulation of BMP10, LIN28 or TCIM in tandem with downregulation of GRIK1 or DGKK among others. Lactate also demonstrated a capability to modulate the production of inflammatory cytokines on cardiac fibroblasts, reducing the production of Fas, Fraktalkine or IL-12p40, while stimulating IL-13 and SDF1a. In addition, the generation of a lactate-rich environment improved ex vivo neonatal heart culture, by affecting the contractile activity and sarcomeric structures and inhibiting epicardial cell spreading. Our results also suggested a common link between the effect of lactate and the activation of hypoxia signaling pathways. These findings support a novel use of lactate in cardiac tissue engineering, modulating the metabolic environment of the heart and thus paving the way to the development of lactate-releasing platforms for in situ cardiac regeneration.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ácido Láctico/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo
7.
ACS Appl Mater Interfaces ; 14(26): 29467-29482, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35735173

RESUMO

The tumor extracellular matrix (ECM) plays a vital role in tumor progression and drug resistance. Previous studies have shown that breast tissue-derived matrices could be an important biomaterial to recreate the complexity of the tumor ECM. We have developed a method for decellularizing and delipidating a porcine breast tissue (TDM) compatible with hydrogel formation. The addition of gelatin methacrylamide and alginate allows this TDM to be bioprinted by itself with good printability, shape fidelity, and cytocompatibility. Furthermore, this bioink has been tuned to more closely recreate the breast tumor by incorporating collagen type I (Col1). Breast cancer cells (BCCs) proliferate in both TDM bioinks forming cell clusters and spheroids. The addition of Col1 improves the printability of the bioink as well as increases BCC proliferation and reduces doxorubicin sensitivity due to a downregulation of HSP90. TDM bioinks also allow a precise three-dimensional printing of scaffolds containing BCCs and stromal cells and could be used to fabricate artificial tumors. Taken together, we have proven that these novel bioinks are good candidates for biofabricating breast cancer models.


Assuntos
Bioimpressão , Neoplasias , Animais , Bioimpressão/métodos , Matriz Extracelular , Impressão Tridimensional , Suínos , Engenharia Tecidual/métodos , Alicerces Teciduais
8.
ACS Appl Mater Interfaces ; 13(37): 44108-44123, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34494824

RESUMO

Most morphogenetic and pathological processes are driven by cells responding to the surrounding matrix, such as its composition, architecture, and mechanical properties. Despite increasing evidence for the role of extracellular matrix (ECM) in tissue and disease development, many in vitro substitutes still fail to effectively mimic the native microenvironment. We established a novel method to produce macroscale (>1 cm) mesenchymal cell-derived matrices (CDMs) aimed to mimic the fibrotic tumor microenvironment surrounding epithelial cancer cells. CDMs are produced by human adipose mesenchymal stem cells cultured in sacrificial 3D scaffold templates of fibronectin-coated poly-lactic acid microcarriers (MCs) in the presence of macromolecular crowders. We showed that decellularized CDMs closely mimic the fibrillar protein composition, architecture, and mechanical properties of human fibrotic ECM from cancer masses. CDMs had highly reproducible composition made of collagen types I and III and fibronectin ECM with tunable mechanical properties. Moreover, decellularized and MC-free CDMs were successfully repopulated with cancer cells throughout their 3D structure, and following chemotherapeutic treatment, cancer cells showed greater doxorubicin resistance compared to 3D culture in collagen hydrogels. Collectively, these results support the use of CDMs as a reproducible and tunable tool for developing 3D in vitro cancer models.


Assuntos
Técnicas de Cultura de Células em Três Dimensões/métodos , Matriz Extracelular Descelularizada/química , Células-Tronco Mesenquimais/química , Alicerces Teciduais/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Modelos Biológicos , Estudo de Prova de Conceito , Microambiente Tumoral/fisiologia
9.
Biofabrication ; 13(3)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33962409

RESUMO

The creation of cardiac tissue models for preclinical testing is still a non-solved problem in drug discovery, due to the limitations related to thein vitroreplication of cardiac tissue complexity. Among these limitations, the difficulty of mimicking the functional properties of the myocardium due to the immaturity of the used cells hampers the obtention of reliable results that could be translated into human patients.In vivomodels are the current gold standard to test new treatments, although it is widely acknowledged that the used animals are unable to fully recapitulate human physiology, which often leads to failures during clinical trials. In the present work, we present a microfluidic platform that aims to provide a range of signaling cues to immature cardiac cells to drive them towards an adult phenotype. The device combines topographical electrospun nanofibers with electrical stimulation in a microfabricated system. We validated our platform using a co-culture of neonatal mouse cardiomyocytes and cardiac fibroblasts, showing that it allows us to control the degree of anisotropy of the cardiac tissue inside the microdevice in a cost-effective way. Moreover, a 3D computational model of the electrical field was created and validated to demonstrate that our platform is able to closely match the distribution obtained with the gold standard (planar electrode technology) using inexpensive rod-shaped biocompatible stainless-steel electrodes. The functionality of the electrical stimulation was shown to induce a higher expression of the tight junction protein Cx-43, as well as the upregulation of several key genes involved in conductive and structural cardiac properties. These results validate our platform as a powerful tool for the tissue engineering community due to its low cost, high imaging compatibility, versatility, and high-throughput configuration capabilities.


Assuntos
Estimulação Elétrica , Animais , Anisotropia , Humanos , Camundongos , Miócitos Cardíacos , Nanofibras , Engenharia Tecidual
10.
Biomedicines ; 9(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669131

RESUMO

Tissue engineering and regenerative medicine approaches use biomaterials in combination with cells to regenerate lost functions of tissues and organs to prevent organ transplantation. However, most of the current strategies fail in mimicking the tissue's extracellular matrix properties. In order to mimic native tissue conditions, we developed cell-derived matrix (CDM) microtissues (MT). Our methodology uses poly-lactic acid (PLA) and Cultispher® S microcarriers' (MCs') as scaffold templates, which are seeded with rat bone marrow mesenchymal stem cells (rBM-MSCs). The scaffold template allows cells to generate an extracellular matrix, which is then extracted for downstream use. The newly formed CDM provides cells with a complex physical (MT architecture) and biochemical (deposited ECM proteins) environment, also showing spontaneous angiogenic potential. Our results suggest that MTs generated from the combination of these two MCs (mixed MTs) are excellent candidates for tissue vascularization. Overall, this study provides a methodology for in-house fabrication of microtissues with angiogenic potential for downstream use in various tissue regenerative strategies.

11.
Mater Sci Eng C Mater Biol Appl ; 121: 111854, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579487

RESUMO

Thymidine kinase expressing human adipose mesenchymal stem cells (TK-hAMSCs) in combination with ganciclovir (GCV) are an effective platform for antitumor bystander therapy in mice models. However, this strategy requires multiple TK-hAMSCs administrations and a substantial number of cells. Therefore, for clinical translation, it is necessary to find a biocompatible scaffold providing TK-hAMSCs retention in the implantation site against their rapid wash-out. We have developed a microtissue (MT) composed by TKhAMSCs and a scaffold made of polylactic acid microparticles and cell-derived extracellular matrix deposited by hAMSCs. The efficacy of these MTs as vehicles for TK-hAMSCs/GCV bystander therapy was evaluated in a rodent model of human prostate cancer. Subcutaneously implanted MTs were integrated in the surrounding tissue, allowing neovascularization and maintenance of TK-hAMSCs viability. Furthermore, MTs implanted beside tumors allowed TK-hAMSCs migration towards tumor cells and, after GCV administration, inhibited tumor growth. These results indicate that TK-hAMSCs-MTs are promising cell reservoirs for clinical use of therapeutic MSCs in bystander therapies.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Animais , Efeito Espectador , Linhagem Celular Tumoral , Ganciclovir/farmacologia , Camundongos , Neoplasias/terapia , Simplexvirus , Timidina Quinase
12.
J Control Release ; 330: 669-683, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33388340

RESUMO

We examine different approaches for the controlled release of L-lactate, which is a signaling molecule that participates in tissue remodeling and regeneration, such as cardiac and muscle tissue. Robust, flexible, and self-supported 3-layers films made of two spin-coated poly(lactic acid) (PLA) layers separated by an electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) layer, are used as loading and delivery systems. Films with outer layers prepared using homochiral PLA and with nanoperforations of diameter 146 ± 70 experience more bulk erosion, which also contributes to the release of L-lactic acid, than those obtained using heterochiral PLA and with nanoperforations of diameter 66 ± 24. Moreover, the release of L-lactic acid as degradation product is accelerated by applying biphasic electrical pulses. The four approaches used for loading extra L-lactate in the 3-layered films were: incorporation of L-lactate at the intermediate PEDOT layer as primary dopant agent using (1) organic or (2) basic water solutions as reaction media; (3) substitution at the PEDOT layer of the ClO4- dopant by L-lactate using de-doping and re-doping processes; and (4) loading of L-lactate at the outer PLA layers during the spin-coating process. Electrical stimuli were applied considering biphasic voltage pulses and constant voltages (both negative and positive). Results indicate that the approach used to load the L-lactate has a very significant influence in the release regulation process, affecting the concentration of released L-lactate up to two orders of magnitude. Among the tested approaches, the one based on the utilization of the outer layers for loading, approach (4), can be proposed for situations requiring prolonged and sustained L-lactate release over time. The biocompatibility and suitability of the engineered films for cardiac tissue engineering has also been confirmed using cardiac cells.


Assuntos
Poliésteres , Polímeros , Preparações de Ação Retardada , Estimulação Elétrica , Ácido Láctico , Engenharia Tecidual
13.
Adv Wound Care (New Rochelle) ; 10(5): 234-256, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32320364

RESUMO

Significance: The incidence of chronic wounds is increasing due to our aging population and the augment of people afflicted with diabetes. With the extended knowledge on the biological mechanisms underlying these diseases, there is a novel influx of medical technologies into the conventional wound care market. Recent Advances: Several nanotechnologies have been developed demonstrating unique characteristics that address specific problems related to wound repair mechanisms. In this review, we focus on the most recently developed nanotechnology-based therapeutic agents and evaluate the efficacy of each treatment in in vivo diabetic models of chronic wound healing. Critical Issues: Despite the development of potential biomaterials and nanotechnology-based applications for wound healing, this scientific knowledge is not translated into an increase of commercially available wound healing products containing nanomaterials. Future Directions: Further studies are critical to provide insights into how scientific evidences from nanotechnology-based therapies can be applied in the clinical setting.


Assuntos
Materiais Biocompatíveis/química , Nanoestruturas , Nanotecnologia/métodos , Cicatrização/efeitos dos fármacos , Animais , Materiais Biocompatíveis/farmacologia , Doença Crônica , Humanos
14.
Adv Wound Care (New Rochelle) ; 10(6): 301-316, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32602814

RESUMO

Objective: Wound healing is a complex process that involves the interaction between different cell types and bioactive factors. Impaired wound healing is characterized by a loss in synchronization of these interactions, resulting in nonhealing chronic wounds. Chronic wounds are a socioeconomic burden, one of the most prominent clinical manifestations of diabetes, however, they lack satisfactory treatment options. The objective of this study was to develop polymeric composites that deliver ions having wound healing properties and evaluate its performance using a pressure ulcer model in diabetic mice. Approach: To develop a polymeric composite wound dressing containing ion-releasing nanoparticles for chronic wound healing. This composite was chemically and physically characterized and evaluated using a pressure ulcer wound model in diabetic (db/db) mice to explore their potential as novel wound dressing. Results: This dressing exhibits a controlled ion release and a good in vitro bioactivity. The polymeric composite dressing treatment stimulates angiogenesis, collagen synthesis, granulation tissue formation, and accelerates wound closure of ischemic wounds created in diabetic mice. In addition, the performance of the newly designed composite is remarkably better than a commercially available dressing frequently used for the treatment of low-exuding chronic wounds. Innovation: The developed nanoplatforms are cell- and growth factor free and control the host microenvironment resulting in enhanced wound healing. These nanoplatforms are available by cost-effective synthesis with a defined composition, offering an additional advantage in potential clinical application. Conclusion: Based on the obtained results, these polymeric composites offer an optimum approach for chronic wound healing without adding cells or external biological factors.


Assuntos
Diabetes Mellitus Experimental/patologia , Nanofibras/química , Neovascularização Fisiológica/efeitos dos fármacos , Polímeros/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Bandagens , Sobrevivência Celular/efeitos dos fármacos , Análise Custo-Benefício , Regulação da Expressão Gênica/efeitos dos fármacos , Tecido de Granulação/patologia , Masculino , Camundongos , Camundongos Knockout , Nanofibras/ultraestrutura , Pele/patologia
15.
ACS Omega ; 4(2): 3660-3672, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31459579

RESUMO

Electroactive and biocompatible fibrous scaffolds have been prepared and characterized using polyaniline (PAni) doped with dodecylbenzenesulfonic acid (DBSA) combined with poly(lactic acid) (PLA) and PLA/poly(ethylene glycol) (PEG) mixtures. The composition of simple and core-shell fibers, which have been obtained by both uniaxial and coaxial electrospinning, respectively, has been corroborated by Fourier-transform infrared and micro-Raman spectroscopies. Morphological studies suggest that the incorporation of PEG enhances the packing of PLA and PAni chains, allowing the regulation of the thickness of the fibers. PAni and PEG affect the thermal and electrical properties of the fibers, both decreasing the glass transition temperature and increasing the electrical conductivity. Interestingly, the incorporation of PEG improves the PAni-containing paths associated with the conduction properties. Although dose response curves evidence the high cytotoxicity of PAni/DBSA, cell adhesion and cell proliferation studies on PLA/PAni fibers show a reduction of such harmful effects as the conducting polymer is mainly retained inside the fibers through favorable PAni···PLA interactions. The incorporation of PEG into uniaxial fibers resulted in an increment of the cell mortality, which has been attributed to its rapid dissolution into the culture medium and the consequent enhancement of PAni release. In opposition, the delivery of PAni decreases and, therefore, the biocompatibility of the fibers increases when a shell coating the PAni-containing system is incorporated through coaxial electrospinning. Finally, morphological and functional studies using cardiac cells indicated that these fibrous scaffolds are suitable for cardiac tissue engineering applications.

16.
Biomolecules ; 10(1)2019 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-31905668

RESUMO

Degenerative cartilage pathologies are nowadays a major problem for the world population. Factors such as age, genetics or obesity can predispose people to suffer from articular cartilage degeneration, which involves severe pain, loss of mobility and consequently, a loss of quality of life. Current strategies in medicine are focused on the partial or total replacement of affected joints, physiotherapy and analgesics that do not address the underlying pathology. In an attempt to find an alternative therapy to restore or repair articular cartilage functions, the use of bioengineered tissues is proposed. In this study we present a three-dimensional (3D) bioengineered platform combining a 3D printed polycaprolactone (PCL) macrostructure with RAD16-I, a soft nanofibrous self-assembling peptide, as a suitable microenvironment for human mesenchymal stem cells' (hMSC) proliferation and differentiation into chondrocytes. This 3D bioengineered platform allows for long-term hMSC culture resulting in chondrogenic differentiation and has mechanical properties resembling native articular cartilage. These promising results suggest that this approach could be potentially used in articular cartilage repair and regeneration.


Assuntos
Cartilagem Articular/fisiologia , Impressão Tridimensional , Regeneração , Medicina Regenerativa/instrumentação , Engenharia Tecidual , Cartilagem Articular/citologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
17.
Nanotechnology ; 29(39): 395102, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30039802

RESUMO

Extracellular calcium has been proved to influence the healing process of injuries and could be used as a novel therapy for skin wound healing. However, a better understanding of its effect, together with a system to obtain a controlled release is needed. In this study, we examined whether the ionic dissolution of the calcium-phosphate-based ormoglass nanoparticles coded SG5 may produce a similar stimulating effect as extracellular calcium (from CaCl2) on rat dermal fibroblast in vitro. Cells were cultured in the presence of medium containing different calcium concentrations, normally ranging from 0.1 to 3.5 mM Ca2+. A concentration of 3.5 mM of CaCl2 increased metabolic activity, in vitro wound closure, matrix metalloproteinases (MMP) activity, collagen synthesis and cytokine expression, and reduced cell contraction capacity. Interestingly, the levels of migration and contraction capacity measured followed a dose-dependent behavior. In addition, media conditioned with SG5 stimulated the same activities as media conditioned with CaCl2, but undesired effects in chronic wound healing such as inflammatory factor expression and MMP activity were reduced compared to the equivalent CaCl2 concentration. In summary, calcium-releasing particles such as SG5 are potential biological-free biostimulators to be applied in dressings for chronic wound healing.


Assuntos
Cálcio/farmacologia , Derme/patologia , Espaço Extracelular/química , Fibroblastos/patologia , Nanopartículas/química , Cicatrização/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Íons , Metaloproteinases da Matriz/metabolismo , Nanopartículas/ultraestrutura , Ratos , Cicatrização/genética
18.
Adv Drug Deliv Rev ; 129: 95-117, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29627369

RESUMO

Skin wound healing aims to repair and restore tissue through a multistage process that involves different cells and signalling molecules that regulate the cellular response and the dynamic remodelling of the extracellular matrix. Nowadays, several therapies that combine biomolecule signals (growth factors and cytokines) and cells are being proposed. However, a lack of reliable evidence of their efficacy, together with associated issues such as high costs, a lack of standardization, no scalable processes, and storage and regulatory issues, are hampering their application. In situ tissue regeneration appears to be a feasible strategy that uses the body's own capacity for regeneration by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the wound site to promote repair and regeneration. The aim is to engineer instructive systems to regulate the spatio-temporal delivery of proper signalling based on the biological mechanisms of the different events that occur in the host microenvironment. This review describes the current state of the different signal cues used in wound healing and skin regeneration, and their combination with biomaterial supports to create instructive microenvironments for wound healing.


Assuntos
Materiais Biocompatíveis/farmacologia , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Materiais Biocompatíveis/química , Humanos , Pele/metabolismo , Pele/patologia
19.
Acta Biomater ; 67: 53-65, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29246650

RESUMO

The use of human mesenchymal stromal cells (hMSC) for treating diseased tissues with poor vascularization has received significant attention, but low cell survival has hampered its translation to the clinic. Bioglasses and glass-ceramics have also been suggested as therapeutic agents for stimulating angiogenesis in soft tissues, but these effects need further evaluation in vivo. In this study, calcium-releasing particles and hMSC were combined within a hydrogel to examine their vasculogenic potential in vitro and in vivo. The particles provided sustained calcium release and showed proangiogenic stimulation in a chorioallantoic membrane (CAM) assay. The number of hMSC encapsulated in a degradable RGD-functionalized PEG hydrogel containing particles remained constant over time and IGF-1 release was increased. When implanted in the epidydimal fat pad of immunocompromised mice, this composite material improved cell survival and stimulated vessel formation and maturation. Thus, the combination of hMSC and calcium-releasing glass-ceramics represents a new strategy to achieve vessel stabilization, a key factor in the revascularization of ischemic tissues. STATEMENT OF SIGNIFICANCE: Increasing blood vessel formation in diseased tissues with poor vascularization is a current clinical challenge. Cell therapy using human mesenchymal stem cells has received considerable interest, but low cell survival has hampered its translation to the clinic. Bioglasses and glass-ceramics have been explored as therapeutic agents for stimulating angiogenesis in soft tissues, but these effects need further evaluation in vivo. By incorporating both human mesenchymal stem cells and glass-ceramic particles in an implantable hydrogel, this study provides insights into the vasculogenic potential in soft tissues of the combined strategies. Enhancement of vessel formation and maturation supports further investigation of this strategy.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Cálcio/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Células-Tronco Mesenquimais/metabolismo , Polietilenoglicóis/química , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/fisiologia , Indutores da Angiogênese/farmacologia , Animais , Vasos Sanguíneos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/efeitos dos fármacos , Células Imobilizadas/metabolismo , Galinhas , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Epididimo/efeitos dos fármacos , Epididimo/fisiologia , Humanos , Implantes Experimentais , Masculino , Maleimidas/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Modelos Biológicos , Neovascularização Fisiológica/efeitos dos fármacos , Tamanho da Partícula
20.
Acta Biomater ; 10(10): 4377-89, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24905933

RESUMO

In this work we have evaluated the capacity of bone morphogenetic protein-2 (BMP-2) and fibrin-binding platelet-derived growth factor-BB (PDGF-BB) to support cell growth and induce bone regeneration using two different imaging technologies to improve the understanding of structural and organizational processes participating in tissue repair. Human mesenchymal stem cells from adipose tissue (hAMSCs) expressing two luciferase genes, one under the control of the cytomegalovirus (CMV) promoter and the other under the control of a tissue-specific promoter (osteocalcin or platelet endothelial cell adhesion molecule), were seeded in fibrin matrices containing BMP-2 and fibrin-binding PDGF-BB, and further implanted intramuscularly or in a mouse calvarial defect. Then, cell growth and bone regeneration were monitored by bioluminescence imaging (BLI) to analyze the evolution of target gene expression, indicative of cell differentiation towards the osteoblastic and endothelial lineages. Non-invasive imaging was supplemented with micro-computed tomography (µCT) to evaluate bone regeneration and high-resolution µCT of vascular casts. Results from BLI showed hAMSC growth during the first week in all cases, followed by a rapid decrease in cell number; as well as an increment of osteocalcin but not PECAM-1 expression 3weeks after implantation. Results from µCT show that the delivery of BMP-2 and PDGF-BB by fibrin induced the formation of more bone and improves vascularization, resulting in more abundant and thicker vessels, in comparison with controls. Although the inclusion of hAMSCs in the fibrin matrices made no significant difference in any of these parameters, there was a significant increment in the connectivity of the vascular network in defects treated with hAMSCs.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea , Diferenciação Celular , Fibrina/farmacologia , Medições Luminescentes , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Proteínas Proto-Oncogênicas c-sis/farmacologia , Crânio , Microtomografia por Raio-X , Tecido Adiposo/metabolismo , Animais , Becaplermina , Células Endoteliais/metabolismo , Matriz Extracelular/química , Humanos , Luciferases/biossíntese , Luciferases/genética , Camundongos , Camundongos SCID , Osteoblastos/metabolismo , Crânio/lesões , Crânio/metabolismo , Crânio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...