Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutr Neurosci ; 26(8): 680-695, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36039918

RESUMO

OBJECTIVES: Cerebral ischemia is the most common cause of disability, the second most common cause of dementia, and the fourth most common cause of death in the developed world [Sveinsson OA, Kjartansson O, Valdimarsson EM. Heilablóðþurrð/heiladrep: Faraldsfræði, orsakir og einkenni [Cerebral ischemia/infarction - epidemiology, causes and symptoms]. Laeknabladid. 2014 May;100(5):271-9. Icelandic. doi:10.17992/lbl.2014.05.543]. Obesity has been associated with worse outcomes after ischemia in rats, triggering proinflammatory cytokine production related to the brain microvasculature. The way obesity triggers these effects remains mostly unknown. Therefore, the aim of this study was to elucidate the cellular mechanisms of damage triggered by obesity in the context of cerebral ischemia. METHODS: We used a rat model of obesity induced by a 20% high fructose diet (HFD) and evaluated peripheral alterations in plasma (lipid and cytokine profiles). Then, we performed cerebral ischemia surgery using two-vessel occlusion (2VO) and analyzed neurological/motor performance and glial activation. Next, we treated endothelial cell line cultures with glutamate in vitro to simulate an excitotoxic environment, and we added 20% plasma from obese rats. Subsequently, we isolated EVs released from endothelial cells and treated primary cultures of astrocytes with them. RESULTS: Rats fed a HFD had an increased BMI with dyslipidemia and high levels of proinflammatory cytokines. Glia from the obese rats exhibited altered morphology, suggesting hyperreactivity related to neurological and motor deficits. Plasma from obese rats induced activation of endothelial cells, increasing proinflammatory signals and releasing more EVs. Similarly, these EVs caused an increase in NF-κB and astrocyte cytotoxicity. Together, the results suggest that obesity activates proinflammatory signals in endothelial cells, resulting in the release of EVs that simultaneously contribute to astrocyte activation.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Vesículas Extracelulares , Ratos , Animais , Células Endoteliais/metabolismo , Isquemia Encefálica/complicações , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Obesidade/metabolismo , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Endotélio/metabolismo , Vesículas Extracelulares/metabolismo , Citocinas/metabolismo
2.
Nutr Neurosci ; 25(1): 122-136, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32116157

RESUMO

Objectives: Cerebral ischemia is caused by a reduction of the blood flow in a specific area in the brain, triggering cellular cascades in the tissue that result in neuronal death. This phenomenon leads to neurological decline in patients with stroke. The extent of the injury after stroke could be related to the condition of obesity. Thus, we aim to analyze the effect of obesity induced by a high fructose diet (HFD) on the brain after cerebral ischemia in rats.Methods: We induced the obesity model in female Wistar rats with 20% fructose in water for 11 weeks. We then performed cerebral ischemia surgery (2-vessel occlusion), carried out the neurological test 6, 24 and 48 h post-ischemia and analyzed the histological markers.Results: The HFD induced an obese phenotype without insulin resistance. The obese rats exhibited worse neurological performance at 6 h post-ischemia and showed neuronal loss and astroglial and microglial immunoreactivity changes in the caudate putamen, motor cortex, amygdala and hippocampus at 48 h post-ischemia. However, the most commonly affected area was the hippocampus, where we found an increase in interleukin 1ß in the blood vessels of the dentate gyrus, a remarkable disruption of MAP-2+ dendrites, a loss of brain-derived neurotrophic factor and the presence of PHF-tau. In conclusion, a HFD induces an obese phenotype and worsens the neuronal loss, inflammation and plasticity impairment in the hippocampus after cerebral ischemia.


Assuntos
Isquemia Encefálica/fisiopatologia , Açúcares da Dieta/administração & dosagem , Frutose/administração & dosagem , Hipocampo/fisiopatologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Obesidade/etiologia , Obesidade/fisiopatologia , Animais , Feminino , Hipocampo/irrigação sanguínea , Inflamação , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA