Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37512691

RESUMO

Milk is considered a complete meal that requires supervision to determine its suitability for human consumption. The development of sustainable devices that evaluate food properties has gained importance due to the necessity of integrating these instruments into the production chain. However, the materials employed to develop it, such as polymers, semiconductors, and glass, lack sustainability and require specialized equipment to fabricate them. Different chemical techniques have been used to miniaturize these detection systems such as microfluidics, which have been used in milk component detection using colorimetry. In this work, a cantilever beam paper-based microfluidic system is proposed to evaluate differences in milk, according to nutritional information, using its electromechanical response. A 20-microliter milk drop is deposited in the system, which induces hygroexpansion and deflection due to liquid transport within the paper. Likewise, a conductive path is added on the beam top surface to supply a constant current that induces heat to evaporate the solution. According to the results obtained, it is possible to point out differences between trademarks with this microfluidic system. The novelty of this system relies on the paper electromechanical response that integrates the hygroexpansion-induced displacement, which can be used for further applications such as milk microtesters instead of colorimetric tests that use paper as a property-evaluation platform in combination with chemical reactions.

2.
Sensors (Basel) ; 23(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36991633

RESUMO

Nowadays, the use of renewable, green/eco-friendly technologies is attracting the attention of researchers, with a view to overcoming recent challenges that must be faced to guarantee the availability of Electric Vehicles (EVs). Therefore, this work proposes a methodology based on Genetic Algorithms (GA) and multivariate regression for estimating and modeling the State of Charge (SOC) in Electric Vehicles. Indeed, the proposal considers the continuous monitoring of six load-related variables that have an influence on the SOC (State of Charge), specifically, the vehicle acceleration, vehicle speed, battery bank temperature, motor RPM, motor current, and motor temperature. Thus, these measurements are evaluated in a structure comprised of a Genetic Algorithm and a multivariate regression model in order to find those relevant signals that better model the State of Charge, as well as the Root Mean Square Error (RMSE). The proposed approach is validated under a real set of data acquired from a self-assembly Electric Vehicle, and the obtained results show a maximum accuracy of approximately 95.5%; thus, this proposed method can be applied as a reliable diagnostic tool in the automotive industry.

3.
Sensors (Basel) ; 17(7)2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28726728

RESUMO

In recent years paper-based microfluidic systems have emerged as versatile tools for developing sensors in different areas. In this work; we report a novel physical sensing principle for the characterization of liquids using a paper-based hygro-mechanical system (PB-HMS). The PB-HMS is formed by the interaction of liquid droplets and paper-based mini-structures such as cantilever beams. The proposed principle takes advantage of the hygroscopic properties of paper to produce hygro-mechanical motion. The dynamic response of the PB-HMS reveals information about the tested liquid that can be applied to characterize certain properties of liquids. A suggested method to characterize liquids by means of the proposed principle is introduced. The experimental results show the feasibility of such a method. It is expected that the proposed principle may be applied to sense properties of liquids in different applications where both disposability and portability are of extreme importance.

4.
Ultramicroscopy ; 115: 61-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22459119

RESUMO

Micro cantilever beams have been intensively used in sensing applications including to scanning profiles and surfaces where there resolution and imaging speed are critical. Force resolution is related to the Q-factor. When the micro-cantilever operates in air with small separation gaps, the Q-factor is even more reduced due to the squeeze-film damping effect. Thus, the optimization of the configuration of an AFM micro-cantilever is presented in this work with the objective of improving its Q-factor. To accomplish this task, we propose the inclusion of holes as breathing chimneys in the initial design to reduce the squeeze-film damping effect. The evaluation of the Q-factor was carried out using finite element model, which is implemented to work together with the squeeze-film damping model. The methodology applied in the optimization process was genetic algorithms, which considers as constraints the maximum allowable stress, fundamental frequency and spring constant with respect to the initial design. The results show that the optimum design, which includes holes with an optimal location, increases the Q-factor almost five times compared to the initial design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...