Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 165: 251-264, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34082331

RESUMO

At specific vibration frequencies like ones generated by insects such as caterpillar chewing and bee's buzz-pollination turn on the plants secondary metabolism and their respective pathways gets activated. Thus, studies report that vibrations and sound waves applied to plants improves their fitness performance. Commonly, acoustic treatments for plants have used arbitrarily random frequencies. In this work, a group of signals obtained from hydric-stressed plants was recorded as vibrational patterns using a laser vibrometer. These vibration-signals were classified as representative of each condition and then externally applied as Acoustic Emission Patterns (AEP). The present research hypothesized that specific vibration frequencies could "emulate" a plant signal through mechanical energy based on tplant's ability to recognize vibration pattern similarity to a hydric status. This investigation aimed to apply the AEP's as characteristic vibrations classified as Low hydric stress (LHS), medium hydric stress (MHS), and high hydric stress (HHS) to evaluate their effect on healthy-well watered plants at two developmental stages. In the vegetative stage, the gene expression related to antioxidant and hydric stress responses was assessed. The LHS, MHS, and HHS acoustic treatments up-regulated the peroxidase (Pod) (~2.8, 1.9, and 3.6-fold change, respectively). The superoxide dismutase (Mn-sod) and phenylalanine ammonia-lyase (Pal) genes were up-regulated by HHS (~0.23 and ~0.55-fold change, respectively) and, the chalcone synthase (Chs) gene was induced by MHS (~0.63-fold-change). At the fructification stage, the MHS treatment induced a significant increase in Capsaicin content (5.88-fold change), probably through the at3and kas gene activation. Findings are correlated for a better understanding of plant responses to different multi frequency-signals tones from vibrations with potential for agricultural applications.


Assuntos
Capsicum , Acústica , Animais , Capsicum/genética , Peroxidases , Fenilalanina Amônia-Liase , Água
2.
Plant Signal Behav ; 15(7): 1770489, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32490712

RESUMO

Plants that experience a lack of sufficient irrigation undergo hydric stress, which causes the modification of their mechanical properties. These changes include a complex network of chemical and physical signals that interact between plant-plant and plant-environment systems in a mechanism that is still not well understood, and that differs among species. This mechanical response implies different levels of vibration when the plant experiences structural modifications from self-hydraulic adjustments of flux exchange at specific frequencies, with these carrying behavioral information. To measure these signals, highly sensitive instrumentation that allows the decoding of displacement velocity and displacement of plants, which is possible through calibrated equipment such as 3D scanning laser vibrometers, is necessary. Laser vibrometry technology allows for noninvasive measurements in real-time. Physiological changes could reasonably affect the biomechanical condition of plants in terms of the frequency (hertz) and intensity of the plant's vibration. In this research, it is proposed that the frequency changes of a plant's vibration are related to the plant's hydric condition and that these frequency vibrations have the ecological potential to communicate water changes and levels of hydric stress. The peak of the velocity of plant displacements was found to vary from 0.079 to 1.74 mm/s, and natural frequencies (hertz) range is between 1.8 and 2.6 Hz for plants with low hydric stress (LHS), between 1.3 and 1.6 Hz for plants with medium hydric stress (MHS), and between 6.7 and 7.8 Hz for plants with high hydric stress. These values could act as preliminary references for water management using noninvasive techniques and, knowledge of the range of natural frequencies of hydric stress risk in chili pepper crops can be applied in precision agriculture practices.


Assuntos
Capsicum/fisiologia , Biofísica , Desidratação , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...