Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biomed Res Int ; 2022: 2044577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046457

RESUMO

Zika virus is a member of the Flaviviridae family and genus Flavivirus, which has a phylogenetic relationship with spondweni virus. It spreads to humans through a mosquito bite. To identify potential inhibitors for the Zika virus with biosafety, we selected natural antiviral compounds isolated from plant sources and screened against NS3 helicase of the Zika virus. The enzymatic activity of the NS3 helicase is associated with the C-terminal region and is concerned with RNA synthesis and genome replication. It serves as a crucial target for the Zika virus. We carried out molecular docking for the target NS3 helicase against the selected 25 phytochemicals using AutoDock Vina software. Among the 25 plant compounds, we identified NS3 helicase-ellagic acid (-9.9 kcal/mol), NS3 helicase-hypericin (-9.8 kcal/mol), and NS3 helicase-pentagalloylglucose (-9.5 kcal/mol) as the best binding affinity compounds based on their binding energies. To understand the stability of these complexes, molecular dynamic simulations were executed and the trajectory analysis exposed that the NS3 helicase-ellagic acid complex possesses greater stability than the other two complexes such as NS3 helicase-hypericin and NS3 helicase-pentagalloylglucose. The ADMET property prediction of these compounds resulted in nontoxicity and noncarcinogenicity.


Assuntos
Flavivirus , Infecção por Zika virus , Zika virus , DNA Helicases/genética , Ácido Elágico , Humanos , Simulação de Acoplamento Molecular , Filogenia , RNA Helicases/genética , Serina Endopeptidases/genética , Proteínas não Estruturais Virais/química , Replicação Viral , Zika virus/química
3.
Saudi J Biol Sci ; 28(7): 3633-3640, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34220213

RESUMO

Scutellaria barbata is a perennial herb which was vastly prescribed in Chinese medicine to treat inflammations, infections and it is also used a detoxifying agent. We synthesized silver nanoparticles with Scutellaria barbata extract and characterized the nanoparticles with UV-Vis spectroscopic analysis, TEM, AFM, FTIR and XRD. The biofilm inhibiting property of synthesized silver nanoparticles were examined with XTT reduction assay and the antimicrobial property was examined with well diffusion method. The silver nanoparticles were also coated with cotton fabrics and their efficacy against antimicrobials was analyzed to prove its application. The cytotoxic property of synthesized silver nanoparticles was examined with L929 fibroblast cells using MTT assay. Finally we analyzed the wound healing property of synthesized silver nanoparticles with wound scratch assay. The result of our UV-Vis spectroscopic analysis confirms Scutellaria barbata aqueous extract reduced silver ions and synthesized silver nanoparticles. The characterization studies TEM, AFM, FTIR and XRD confirms the synthesized silver nanoparticles are in ideal shape and size to be utilized as a drug. The XTT reduction assay proves silver nanoparticles effectively inhibits the biofilm formation in both resistant and sensitive strains. Antimicrobial sensitivity tests confirms synthesized silver nanoparticles and cotton coated synthesized silver nanoparticles both are effective against gram positive, gram negative and fungal species. Further the results of MTT assay confirms the synthesized silver nanoparticles are non toxic and finally the wound healing potency of the nanoparticles was confirmed with wound scratch assay. Over all our results authentically confirms the silver nanoparticles synthesized with Scutellaria barbata aqueous extract is potent wound healing drug.

4.
Saudi J Biol Sci ; 28(7): 3641-3649, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34220214

RESUMO

Osteosarcoma is the frequent pediatric bone cancer where pediatric osteosarcoma incidences are more than 10% within the population. Most of the patients with osteosarcoma fall within the age of 15-30 years. Therefore, in this research, we examined the anticancer effect of Rhaponticin against the human osteosarcoma (MG-63) cells. The cytotoxicity of Rhaponticin on the MC3T3-E1 and MG-63 cells was examined through the MTT assay. The intracellular ROS accumulation, cell nuclear morphological alterations, apoptotic cell death and nuclear damages, and MMP status of Rhaponticin administered MG-63 cells were inspected by fluorescent staining techniques. The cell migration was assessed through scratch assay. The mRNA expressions of PI3K-Akt-mTOR signaling proteins were studied by RT-PCR analysis. Rhaponticin showed potent cytotoxicity, substantially inhibited the MG-63 cell growth, and displayed morphological alterations. However, rhaponticin did not affect the MC3T3-E1 cell viability. Rhaponticin administered MG-63 cells demonstrated augmented intracellular ROS accretion, weakened MMP, increased nuclear damages, and increased apoptosis. Rhaponticin effectively down-regulated the PI3K-Akt-mTOR signaling cascade in the MG-63 cells. These outcomes proved that the Rhaponticin can be a hopeful chemotherapeutic agent in the future to treat human osteosarcoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...