Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells ; 33(10): 2936-48, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26184566

RESUMO

Statin treatment of hypercholesterolemia can lead to chronic myotoxicity which is, in most cases, alleviated by drug withdrawal. Cellular and molecular mechanisms of this adverse effect have been elusive, in particular because of the lack of in vitro models suitable for long-term exposures. We have taken advantage of the properties of human pluripotent stem cell-derived mesodermal precursors, that can be maintained unaltered in vitro for a long period of time, to develop a model of repeated exposures to simvastatin during more than 2 weeks. This approach unveiled major differences, both in functional and molecular terms, in response to single versus repeated-dose exposures to simvastatin. The main functional effect of the in vitro simvastatin-induced long-term toxicity was a loss of proliferative capacity in the absence of concomitant cell death, revealing that cytostatic effect could be a major contributor to statin-induced myotoxicity. Comparative analysis of molecular modifications induced by simvastatin short-term versus prolonged exposures demonstrated powerful adaptive cell responses, as illustrated by the dramatic decrease in the number of differentially expressed genes, distinct biological pathway enrichments, and distinct patterns of nutrient transporters expressed at the cell surface. This study underlines the potential of derivatives of human pluripotent stem cells for developing new approaches in toxicology, in particular for chronic toxicity testing.


Assuntos
Hipercolesterolemia/tratamento farmacológico , Mesoderma/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Sinvastatina/efeitos adversos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Hipercolesterolemia/complicações , Hipercolesterolemia/patologia , Mesoderma/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Células-Tronco Pluripotentes/citologia , Sinvastatina/administração & dosagem , Transcriptoma/efeitos dos fármacos
2.
Proteomics ; 12(14): 2295-302, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22887947

RESUMO

Perturbation of individual microRNAs, or of the microRNA pathway, plays a role in carcinogenesis. In certain cancer cells, inhibition of the microRNA biogenesis pathway leads to a growth arrest state (CoGAM for Colony Growth Arrest induced by Microprocessor inhibition), which can be rescued by re-expression of individual microRNAs such as miR-20a. We now report that inhibition of the microRNA biogenesis pathway induced proteome changes characterized by a size bias in differentially expressed proteins, with induction of small proteins and inhibition of large ones. This size bias was observed in cells undergoing CoGAM, as well as in CoGAM-resistant cells, and in CoGAM-sensitive cells rescued by miR-20a. In this case, GO analysis of induced proteins identified by mass spectrometry revealed a significant enrichment in proteins involved in resistance to oxidative stress. In addition, H(2) O(2) treatment of Saccharomyces cerevisiae or mammalian cells led to similarly size-biased proteome modifications. Our results point to size bias as a relevant readout of proteome modifications, in particular in conditions of stress such as inhibition of the microRNA biogenesis pathway or oxidative stress. They also suggest research avenues to study the role of the microRNA pathway in proteostasis.


Assuntos
Antioxidantes/metabolismo , MicroRNAs/metabolismo , Estresse Oxidativo/fisiologia , Proteoma/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Eletroforese em Gel Bidimensional , Células HCT116 , Homeostase/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Células MCF-7 , MicroRNAs/biossíntese , MicroRNAs/genética , Estresse Oxidativo/efeitos dos fármacos , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Proteoma/química , Proteoma/efeitos dos fármacos , Proteoma/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
3.
PLoS One ; 5(7): e11675, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20652024

RESUMO

BACKGROUND: Biosynthesis of the dolichol linked oligosaccharide (DLO) required for protein N-glycosylation starts on the cytoplasmic face of the ER to give Man(5)GlcNAc(2)-PP-dolichol, which then flips into the ER for further glycosylation yielding mature DLO (Glc(3)Man(9)GlcNAc(2)-PP-dolichol). After transfer of Glc(3)Man(9)GlcNAc(2) onto protein, dolichol-PP is recycled to dolichol-P and reused for DLO biosynthesis. Because de novo dolichol synthesis is slow, dolichol recycling is rate limiting for protein glycosylation. Immature DLO intermediates may also be recycled by pyrophosphatase-mediated cleavage to yield dolichol-P and phosphorylated oligosaccharides (fOSGN2-P). Here, we examine fOSGN2-P generation in cells from patients with type I Congenital Disorders of Glycosylation (CDG I) in which defects in the dolichol cycle cause accumulation of immature DLO intermediates and protein hypoglycosylation. METHODS AND PRINCIPAL FINDINGS: In EBV-transformed lymphoblastoid cells from CDG I patients and normal subjects a correlation exists between the quantities of metabolically radiolabeled fOSGN2-P and truncated DLO intermediates only when these two classes of compounds possess 7 or less hexose residues. Larger fOSGN2-P were difficult to detect despite an abundance of more fully mannosylated and glucosylated DLO. When CDG Ig cells, which accumulate Man(7)GlcNAc(2)-PP-dolichol, are permeabilised so that vesicular transport and protein synthesis are abolished, the DLO pool required for Man(7)GlcNAc(2)-P generation could be depleted by adding exogenous glycosylation acceptor peptide. Under conditions where a glycotripeptide and neutral free oligosaccharides remain predominantly in the lumen of the ER, Man(7)GlcNAc(2)-P appears in the cytosol without detectable generation of ER luminal Man(7)GlcNAc(2)-P. CONCLUSIONS AND SIGNIFICANCE: The DLO pools required for N-glycosylation and fOSGN2-P generation are functionally linked and this substantiates the hypothesis that pyrophosphatase-mediated cleavage of DLO intermediates yields recyclable dolichol-P. The kinetics of cytosolic fOSGN2-P generation from a luminally-generated DLO intermediate demonstrate the presence of a previously undetected ER-to-cytosol translocation process for either fOSGN2-P or DLO.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Oligossacarídeos/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Glicosilação , Humanos , Linfoma/metabolismo , Camundongos , Modelos Biológicos , Fosforilação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...