Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(11): 8901-8914, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37698753

RESUMO

BACKGROUND: Synthetic dyes are one of the main pollutants in the textile industry and bioremediation is considered as an environmentally friendly method to degrade them. Soil microbial consortia (MCs) are reported having the potential of decolorizing most of textile dyes. This study aimed at evaluating dye-degrading ability of MCs developed from fungi and bacteria. METHODS AND RESULTS: Fungi and bacteria were isolated from the soil samples obtained from textile waste dumping site at Horana industrial zone, Sri Lanka and were screened for crystal violet (CV) and congo red (CR) dyes to develop MCs. Decolorization assay was performed for MCs along with individual isolates under variable pH levels. Metabolized products were characterized to confirm the biodegradation. A. tamari (F5) and P. putida (B3) significantly (P < 0.05) decolorized both dyes. All the MCs showed higher decolorization percentages over the individual microorganisms. Neutral pH (pH 7) was the optimum pH for the decolorization of both dyes by individual isolates and the percentages were significantly changed under the acidic and basic pH levels. However, decolorization ability by all MCs was not significantly changed with pH. Consortium with A. tamari - P. putida significantly (P < 0.05) decolourized both dyes under optimum pH 7. CONCLUSION: All MCs showed better pH tolerance in degrading CV and CR. Thus, it can be concluded that the selected MC with A. tamari - P. putida can degrade CV and CR textile dyes efficiently into non-toxic compounds against plants under neutral pH. Degradation and decolorization of textile azo dyes by effective fungal-bacterial consortium.


Assuntos
Compostos Azo , Corantes , Compostos Azo/metabolismo , Corantes/química , Vermelho Congo/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Têxteis , Solo
2.
World J Microbiol Biotechnol ; 38(5): 85, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35380298

RESUMO

Heavy metal pollution due to excessive use of chemical fertilizers (CF) causes major damage to the environment. Microbial biofilms, closely associated with the rhizosphere can remediate heavy metal-contaminated soil by reducing plant toxicity. Thus, this study was undertaken to examine the remedial effects of microbial biofilms against contaminated heavy metals. Fungi and bacteria isolated from soil were screened for their tolerance against Cd2+, Pb2+, and Zn2+. Three bacterial and two fungal isolates were selected upon the tolerance index (TI) percentage. Fungal-bacterial biofilms (FBBs) were developed with the most tolerant isolates and were further screened for their bioremediation capabilities against heavy metals. The best biofilm was evaluated for its rhizoremediation capability with different CF combinations using a pot experiment conducted under greenhouse conditions with potatoes. Significantly (P < 0.05), the highest metal removal percentage was observed in Trichoderma harzianum and Bacillus subtilis biofilm under in situ conditions. When compared to the 100% recommended CF, the biofilm with 50% of the recommended CF (50CB) significantly (P < 0.05) reduced soil available Pb2+ by 77%, Cd2+ by 78% and Zn2+ by 62%. In comparison to initial soil, it was 73%, 76%, and 57% lower of Pb2+, Cd2+, and Zn2+, respectively. In addition, 50CB treatment significantly (P < 0.05) reduced the metal penetration into the tuber tissues in comparison with 100 C. Thus, the function of the developed FBB with T. harzianum-B. subtilis can be used as a potential solution to remediate soil polluted with Pb2+ Cd2+ and Zn2+ metal contaminants.


Assuntos
Metais Pesados , Poluentes do Solo , Bactérias , Biodegradação Ambiental , Biofilmes , Fungos , Metais Pesados/toxicidade , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...