Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38980760

RESUMO

BACKGROUND: Acanthamoeba spp. is the causative agent of Acanthamoeba keratitis and granulomatous amoebic encephalitis. Strathclyde minor groove binders (S-MGBs) are a promising new class of anti-infective agent that have been shown to be effective against many infectious organisms. OBJECTIVES: To synthesize and evaluate the anti-Acanthamoeba activity of a panel of S-MGBs, and therefore determine the potential of this class for further development. METHODS: A panel of 12 S-MGBs was synthesized and anti-Acanthamoeba activity was determined using an alamarBlue™-based trophocidal assay against Acanthamoeba castellanii. Cross-screening against Trypanosoma brucei brucei, Staphylococcus aureus and Escherichia coli was used to investigate selective potency. Cytotoxicity against HEK293 cells allowed for selective toxicity to be measured. DNA binding studies were carried out using native mass spectrometry and DNA thermal shift assays. RESULTS AND DISCUSSION: S-MGB-241 has an IC50 of 6.6 µM against A. castellanii, comparable to the clinically used miltefosine (5.6 µM) and negligible activity against the other organisms. It was also found to have an IC50 > 100 µM against HEK293 cells, demonstrating low cytotoxicity. S-MGB-241 binds to DNA as a dimer, albeit weakly compared to other S-MGBs previously studied. This was confirmed by DNA thermal shift assay with a ΔTm = 1 ±â€Š0.1°C. CONCLUSIONS: Together, these data provide confidence that S-MGBs can be further optimized to generate new, potent treatments for Acanthameoba spp. infections. In particular, S-MGB-241, has been identified as a 'hit' compound that is selectively active against A. castellanii, providing a starting point from which to begin optimization of DNA binding and potency.

2.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233213

RESUMO

The neglected tropical disease leishmaniasis, caused by Leishmania spp., is becoming more problematic due to the emergence of drug-resistant strains. Therefore, new drugs to treat leishmaniasis, with novel mechanisms of action, are urgently required. Strathclyde minor groove binders (S-MGBs) are an emerging class of anti-infective agent that have been shown to have potent activity against various bacteria, viruses, fungi and parasites. Herein, it is shown that S-MGBs have potent activity against L. donovani, and that an N-oxide derivation of the tertiary amine tail of typical S-MGBs leads to selective anti-leishmanial activity. Additionally, using S-MGB-219, the N-oxide derivation is shown to retain strong binding to DNA as a 2:1 dimer. These findings support the further study of anti-leishmanial S-MGBs as novel therapeutics.


Assuntos
Leishmania , Óxidos , Aminas , DNA/metabolismo , Leishmania/metabolismo
3.
Org Lett ; 22(4): 1659-1664, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31999132

RESUMO

Malonoyl peroxide 6 is an effective reagent for the syn- or anti-oxyamination of alkenes. Reaction of 6 and an alkene in the presence of O-tert-butyl-N-tosylcarbamate (R3 = CO2tBu) leads to the anti-oxyaminated product in up to 99% yield. Use of O-methyl-N-tosyl carbamate (R3 = CO2Me) as the nitrogen nucleophile followed by treatment of the product with trifluoroacetic acid leads to the syn-oxyaminated product in up to 77% yield. Mechanisms consistent with the observed selectivities are proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...