Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 13(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731144

RESUMO

Recurrent headaches, encompassing migraine and tension-type headaches, represent prevalent conditions affecting individuals across different age groups, exerting a substantial influence on daily functioning and quality of life. Headaches serve as common manifestations of underlying health issues. Among these, celiac disease, an autoimmune disorder activated by gluten consumption, has emerged as a noteworthy concern. Recent research indicates a correlation between celiac disease and heightened susceptibility to headaches, particularly migraines. Celiac disease (CD) is an immune-mediated systemic, widespread disorder presenting a heterogeneous constellation of symptoms with a relatively easy diagnosis and therapy. Among signs and symptoms exhibited in celiac disease patients, headache is one of the most common neurological issues addressed among both adults and children. Headache disorders and CD are highly prevalent in the general population; for this reason, any causal association between these conditions and the role of a gluten-free diet (GFD) has been debated. The aim of this manuscript is to review the current scientific literature regarding the potential association between CD and headaches and the beneficial effects of a GFD. Among the various authors, in our opinion, the current state of the evidence suggests a significant role for the early screening of CD during the initial diagnosis of recurrent headaches, either in adults or children.

2.
Front Neurol ; 14: 1134507, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305745

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the pathogen responsible for the pandemic health emergency declared by the World Health Organization in March 2020. During the first part of the pandemic, adults showed mild to severe respiratory symptoms. Children seemed initially exempt, both from acute and subsequent complications. Hyposmia or anosmia were promptly identified as the main symptoms of acute infection, so neurotropism of SARS-CoV-2 was immediately suspected. (1, 2). As the emergency progressed, post infectious neurological complications were described also in pediatric population (3). Cases of cranial neuropathy in connection with acute SARS-CoV-2 infection have been reported in pediatric patients, as an isolate post infectious complication or in the context of the multisystem inflammatory syndrome in children (MIS-C) (4-6). Neuroinflammation is thought to be caused by several mechanisms, among which immune/autoimmune reactions (7), but so far, no specific autoantibody has been identified. SARS-CoV-2 can enter the central nervous system (CNS) directly and/or infect it retrogradely, through the peripheral nervous system (PNS), after replicating peripherally; several factors regulate invasion and subsequent neuroinflammation. Indeed, direct/secondary entry and replication can activate CNS-resident immune cells that, together with peripheral leukocytes, induce an immune response and promote neuroinflammation. In addition, as we will discuss in the following review, many cases of peripheral neuropathy (cranial and non-cranial) have been reported during or after SARS-CoV-2 infection. However, some authors have pointed out that the increase of cranial roots and ganglia in neurological imaging is not always observed in children with cranial neuropathy. (8). Even if a variety of case reports were published, opinions about an increased incidence of such neurologic diseases, linked to SARS-CoV-2 infection, are still controversial (9-11). Facial nerve palsy, ocular movements abnormalities and vestibular alterations are among the most reported issues in pediatric population (3-5). Moreover, an increased screen exposure imposed by social distancing led to acute oculomotion's disturbance in children, not primarily caused by neuritis (12, 13). The aim of this review is to suggest food for thought on the role of SARS-CoV-2 in neurological conditions, affecting the peripheral nervous system to optimize the management and care of pediatric patients.

3.
Front Neurol ; 12: 806516, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35178022

RESUMO

We report on the rare case of a male toddler presenting with myoclonic epilepsy characterized by daily episodes of upward movements of the eyebrows, and myoclonic jerks of both head and upper limbs. In addition, the child showed speech delay, tremors, and lack of motor coordination. Next Generation Sequencing analysis (NGS) performed in trio revealed in the proband the c.889C>T de novo missense variant in the KCNA2 gene in heterozygous state. This is the first case of myoclonic epilepsy in a toddler due to a c.889C>T KCNA2 missense variant. The patient was treated with valproic acid and ethosuximide with a good clinical response. At 6 years old, follow-up revealed that the proband was seizure-free with tremors and clumsiness in movements. According to the literature, this case supports the correlation between myoclonic epilepsy and KCNA2 alterations. This evidence suggests that performing genomic testing including the KCNA2 gene in preschool patients affected by myoclonic epilepsy, especially when associated with delayed neurodevelopment. Our goal is to expand the phenotypical spectrum of this rare condition and adding clinical features following a genotype-first approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...