Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 181: 106186, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37269878

RESUMO

BACKGROUND AND OBJECTIVE: Candida tropicalis is among the most prevalent human pathogenic yeast species. Switch states of C. tropicalis differ in virulence traits. Here, we evaluate the effect of phenotypic switching on phagocytosis and yeast-hyphae transition in C. tropicalis. METHODS: C. tropicalis morphotypes included a clinical strain and two switch strains (rough variant and rough revertant). In vitro, phagocytosis assay was performed using peritoneal macrophages and hemocytes. The proportion of hyphal cells was ascertained by scoring morphology using optical microscopy. Expression of the WOR1 (White-opaque regulator 1) and EFG1 (Enhanced filamentous growth protein 1) was determined by quantitative PCR. RESULTS: The rough variant was more resistant to in vitro phagocytosis by peritoneal macrophages than that observed for the clinical strain, while hemocytes phagocytosed clinical and rough variant to the same extent. The rough revertant was more phagocytosed than the clinical strain by both phagocytes. During co-incubation with phagocytic cells, the clinical strain of C. tropicalis exists mainly as blastoconidia. The co-culture of the rough variant with macrophages resulted in a higher percentage of hyphae than blastoconidia cells, while in co-culture with hemocytes, no differences were observed between the percentage of hyphae and blastoconidia. The expression levels of WOR1 in the rough variant co-cultured with phagocytes were significantly higher than they were in the clinical strain. CONCLUSIONS: Differences on phagocytosis and hyphal growth between switch states cells of C. tropicalis co-cultured with phagocytic cells were observed. The pronounced hyphal growth may affect the complex host-pathogen relationship and favor the pathogen to escape phagocytosis. The pleiotropic effects of phenotypic switching suggest that this event may contribute to the success of infection associated with C. tropicalis.


Assuntos
Candida tropicalis , Fagocitose , Humanos , Técnicas de Cocultura , Macrófagos Peritoneais , Morfogênese , Candida albicans
2.
Microb Pathog ; 149: 104346, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32562809

RESUMO

Candida tropicalis can undergo multiple forms of phenotypic switching. We have reported a switching system in C. tropicalis that is associated with changes in virulence attributes. We aimed to assess biofilm formation by distinct switch states of C. tropicalis and evaluate whether their sessile cells exhibit altered virulence traits. C. tropicalis strains included the parental phenotype (a clinical isolate) and four switch phenotypes (crepe, rough, revertant of crepe and revertant of rough). Biofilm formation and adhesion capability of sessile cells on polystyrene were assessed through quantification of total biomass. Filamentous forms were characterized by direct counting of sessile cells. A virulence assay was conducted using the Galleria mellonella infection model. Switch variants (crepe and rough) and their revertant counterparts produced higher biofilm biomass (P < 0.05) than the parental strain. Additionally, filamentous forms were enriched among sessile cells of switched strains compared to those observed for sessile cells of the parental strain, with the exception of the revertant of rough. Sessile cells of switched strains showed higher adhesion to polystyrene compared to the parental strain. Sessile cells of the crepe variant and its revertant strain (RC) exhibited higher virulence against G. mellonella larvae than sessile cells of the parental strain. Our findings indicate that switching events in C. tropicalis affect biofilm development and that sessile cells of distinct switch states may exhibit increased adhesion ability and enhanced virulence towards G. mellonella larvae.


Assuntos
Candida tropicalis , Mariposas , Animais , Biofilmes , Candida tropicalis/genética , Fenótipo , Virulência
3.
Sci Rep ; 9(1): 12555, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467372

RESUMO

Candida tropicalis is a human pathogen associated with high mortality rates. We have reported a switching system in C. tropicalis consisting of five morphotypes - the parental, switch variant (crepe and rough), and revertant (crepe and rough) strains, which exhibited altered virulence in a Galleria mellonella model. Here, we evaluate whether switching events may alter host-pathogen interactions by comparing the attributes of the innate responses to the various states. All switched strains induced higher melanization in G. mellonella larvae than that induced by the parental strain. The galiomicin expression was higher in the larvae infected with the crepe and rough morphotypes than that in the larvae infected with the parental strain. Hemocytes preferentially phagocytosed crepe variant cells over parental cells in vitro. In contrast, the rough variant cells were less phagocytosed than the parental strain. The hemocyte density was decreased in the larvae infected with the crepe variant compared to that in the larvae infected with the parental strain. Interestingly, larvae infected with the revertant of crepe restored the hemocyte density levels that to those observed for larvae infected with the parental strain. Most of the switched strains were more resistant to hemocyte candidacidal activity than the parental strain. These results indicate that the switch states exhibit similarities as well as important differences during infection in a G. mellonella model.


Assuntos
Candida tropicalis/fisiologia , Candidíase/imunologia , Candidíase/metabolismo , Interações Hospedeiro-Patógeno , Lepidópteros/microbiologia , Fenótipo , Animais , Candidíase/sangue , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hemócitos/imunologia , Melaninas/metabolismo , Fagocitose , Especificidade da Espécie , Análise de Sobrevida
4.
Folia Microbiol (Praha) ; 63(4): 405-412, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29335820

RESUMO

Hemolytic factor production by pathogenic Candida species is considered an important attribute in promoting survival within the mammal host through the ability to assimilate iron from the hemoglobin-heme group. Hemolytic capability has been evaluated for Candida species based on hemolysis zones on plate assay, analysis of hemolytic activity in liquid culture medium, and hemolysis from cell-free culture broth. The production of hemolytic factor is variable among Candida species, where C. parapsilosis is the less hemolytic species. In general, no intraspecies differences in beta-hemolytic activities are found among isolates belonging to C. albicans, C. glabrata, C. krusei, C. tropicalis, and C. parapsilosis. The production of hemolytic factor by Candida species is affected by several factors such as glucose supplementation in the culture medium, blood source, presence of erythrocytes and hemoglobin, and presence of electrolytes. On the basis of existing achievements, more researches are still needed in order to extend our knowledge about the biochemical nature of hemolytic molecules produced by distinct Candida species, the mechanism of hemolysis, and the molecular basis of the hemolytic factor expression.


Assuntos
Candida/fisiologia , Candidemia/patologia , Hemólise , Candida/classificação , Candida/metabolismo , Candidemia/microbiologia , Meios de Cultura/química , Meios de Cultura/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Especificidade da Espécie , Fatores de Virulência/biossíntese , Fatores de Virulência/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...