Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 86(6): 635-46, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25245406

RESUMO

A critical obstacle to developing effective medications to prevent and/or treat alcohol use disorders is the lack of specific knowledge regarding the plethora of molecular targets and mechanisms underlying alcohol (ethanol) action in the brain. To identify the role of individual receptor subunits in ethanol-induced behaviors, we developed a novel class of ultra-sensitive ethanol receptors (USERs) that allow activation of a single receptor subunit population sensitized to extremely low ethanol concentrations. USERs were created by mutating as few as four residues in the extracellular loop 2 region of glycine receptors (GlyRs) or γ-aminobutyric acid type A receptors (GABA(A)Rs), which are implicated in causing many behavioral effects linked to ethanol abuse. USERs, expressed in Xenopus oocytes and tested using two-electrode voltage clamp, demonstrated an increase in ethanol sensitivity of 100-fold over wild-type receptors by significantly decreasing the threshold and increasing the magnitude of ethanol response, without altering general receptor properties including sensitivity to the neurosteroid, allopregnanolone. These profound changes in ethanol sensitivity were observed across multiple subunits of GlyRs and GABA(A)Rs. Collectively, our studies set the stage for using USER technology in genetically engineered animals as a unique tool to increase understanding of the neurobiological basis of the behavioral effects of ethanol.


Assuntos
Encéfalo/efeitos dos fármacos , Etanol/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Receptores de Glicina/efeitos dos fármacos , Animais , Feminino , Modelos Moleculares , Pregnanolona/farmacologia , Receptores de GABA-A/química , Receptores de Glicina/química , Relação Estrutura-Atividade , Xenopus laevis , Ácido gama-Aminobutírico/farmacologia
2.
J Pharmacol Exp Ther ; 341(2): 543-51, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22357974

RESUMO

Recent studies highlighted the importance of loop 2 of α1 glycine receptors (GlyRs) in the propagation of ligand-binding energy to the channel gate. Mutations that changed polarity at position 52 in the ß hairpin of loop 2 significantly affected sensitivity to ethanol. The present study extends the investigation to charged residues. We found that substituting alanine with the negative glutamate at position 52 (A52E) significantly left-shifted the glycine concentration response curve and increased sensitivity to ethanol, whereas the negative aspartate substitution (A52D) significantly right-shifted the glycine EC50 but did not affect ethanol sensitivity. It is noteworthy that the uncharged glutamine at position 52 (A52Q) caused only a small right shift of the glycine EC50 while increasing ethanol sensitivity as much as A52E. In contrast, the shorter uncharged asparagine (A52N) caused the greatest right shift of glycine EC50 and reduced ethanol sensitivity to half of wild type. Collectively, these findings suggest that charge interactions determined by the specific geometry of the amino acid at position 52 (e.g., the 1-Å chain length difference between aspartate and glutamate) play differential roles in receptor sensitivity to agonist and ethanol. We interpret these results in terms of a new homology model of GlyR based on a prokaryotic ion channel and propose that these mutations form salt bridges to residues across the ß hairpin (A52E-R59 and A52N-D57). We hypothesize that these electrostatic interactions distort loop 2, thereby changing agonist activation and ethanol modulation. This knowledge will help to define the key physical-chemical parameters that cause the actions of ethanol in GlyRs.


Assuntos
Etanol/química , Receptores de Glicina/agonistas , Receptores de Glicina/química , Alanina/química , Animais , Ácido Aspártico/química , Feminino , Ácido Glutâmico/química , Glicina/metabolismo , Humanos , Ativação do Canal Iônico , Canais Iônicos/genética , Canais Iônicos/metabolismo , Mutação , Oócitos , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Eletricidade Estática , Xenopus laevis
3.
Pharmacol Ther ; 127(1): 53-65, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20399807

RESUMO

Glycine receptors (GlyRs) are recognized as the primary mediators of neuronal inhibition in the spinal cord, brain stem and higher brain regions known to be sensitive to ethanol. Building evidence supports the notion that ethanol acting on GlyRs causes at least a subset of its behavioral effects and may be involved in modulating ethanol intake. For over two decades, GlyRs have been studied at the molecular level as targets for ethanol action. Despite the advances in understanding the effects of ethanol in vivo and in vitro, the precise molecular sites and mechanisms of action for ethanol in ligand-gated ion channels in general, and in GlyRs specifically, are just now starting to become understood. The present review focuses on advances in our knowledge produced by using molecular biology, pressure antagonism, electrophysiology and molecular modeling strategies over the last two decades to probe, identify and model the initial molecular sites and mechanisms of ethanol action in GlyRs. The molecular targets on the GlyR are covered on a global perspective, which includes the intracellular, transmembrane and extracellular domains. The latter has received increasing attention in recent years. Recent molecular models of the sites of ethanol action in GlyRs and their implications to our understanding of possible mechanism of ethanol action and novel targets for drug development in GlyRs are discussed.


Assuntos
Etanol/metabolismo , Etanol/farmacologia , Receptores de Glicina/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Etanol/antagonistas & inibidores , Humanos , Modelos Moleculares , Estrutura Molecular , Receptores de Glicina/química , Receptores de Glicina/genética , Relação Estrutura-Atividade
4.
J Biol Chem ; 284(40): 27304-14, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19656948

RESUMO

The present study tests the hypothesis that the structure of extracellular domain Loop 2 can markedly affect ethanol sensitivity in glycine receptors (GlyRs) and gamma-aminobutyric acid type A receptors (GABA(A)Rs). To test this, we mutated Loop 2 in the alpha1 subunit of GlyRs and in the gamma subunit of alpha1beta2gamma2GABA(A)Rs and measured the sensitivity of wild type and mutant receptors expressed in Xenopus oocytes to agonist, ethanol, and other agents using two-electrode voltage clamp. Replacing Loop 2 of alpha1GlyR subunits with Loop 2 from the deltaGABA(A)R (deltaL2), but not the gammaGABA(A)R subunit, reduced ethanol threshold and increased the degree of ethanol potentiation without altering general receptor function. Similarly, replacing Loop 2 of the gamma subunit of GABA(A)Rs with deltaL2 shifted the ethanol threshold from 50 mm in WT to 1 mm in the GABA(A) gamma-deltaL2 mutant. These findings indicate that the structure of Loop 2 can profoundly affect ethanol sensitivity in GlyRs and GABA(A)Rs. The deltaL2 mutations did not affect GlyR or GABA(A)R sensitivity, respectively, to Zn(2+) or diazepam, which suggests that these deltaL2-induced changes in ethanol sensitivity do not extend to all allosteric modulators and may be specific for ethanol or ethanol-like agents. To explore molecular mechanisms underlying these results, we threaded the WT and deltaL2 GlyR sequences onto the x-ray structure of the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel homologue (GLIC). In addition to being the first GlyR model threaded on GLIC, the juxtaposition of the two structures led to a possible mechanistic explanation for the effects of ethanol on GlyR-based on changes in Loop 2 structure.


Assuntos
Etanol/farmacologia , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Animais , Cianobactérias , Relação Dose-Resposta a Droga , Feminino , Moduladores GABAérgicos/farmacologia , Antagonistas de Receptores de GABA-A , Humanos , Canais Iônicos/química , Canais Iônicos/metabolismo , Modelos Moleculares , Mutação , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/agonistas , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Subunidades Proteicas/genética , Receptores de GABA-A/genética , Receptores de Glicina/agonistas , Receptores de Glicina/antagonistas & inibidores , Receptores de Glicina/genética , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
5.
J Biol Chem ; 283(41): 27698-27706, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18658152

RESUMO

The present study tested the hypothesis that several residues in Loop 2 of alpha1 glycine receptors (GlyRs) play important roles in mediating the transduction of agonist activation to channel gating. This was accomplished by investigating the effect of cysteine point mutations at positions 50-60 on glycine responses in alpha1GlyRs using two-electrode voltage clamp of Xenopus oocytes. Cysteine substitutions produced position-specific changes in glycine sensitivity that were consistent with a beta-turn structure of Loop 2, with odd-numbered residues in the beta-turn interacting with other agonist-activation elements at the interface between extracellular and transmembrane domains. We also tested the hypothesis that the charge at position 53 is important for agonist activation by measuring the glycine response of wild type (WT) and E53C GlyRs exposed to methanethiosulfonate reagents. As earlier, E53C GlyRs have a significantly higher EC(50) than WT GlyRs. Exposing E53C GlyRs to the negatively charged 2-sulfonatoethyl methanethiosulfonate, but not neutral 2-hydroxyethyl methanethiosulfonate, positively charged 2-aminoethyl methanethiosulfonate, or 2-trimethylammonioethyl methanethiosulfonate, decreased the glycine EC(50) to resemble WT GlyR responses. Exposure to these reagents did not significantly alter the glycine EC(50) for WT GlyRs. The latter findings suggest that the negative charge at position 53 is important for activation of GlyRs through its interaction with positive charge(s) in other neighboring agonist activation elements. Collectively, the findings provide the basis for a refined molecular model of alpha1GlyRs based on the recent x-ray structure of a prokaryotic pentameric ligand-gated ion channel and offer insight into the structure-function relationships in GlyRs and possibly other ligand-gated ion channels.


Assuntos
Ativação do Canal Iônico/fisiologia , Modelos Moleculares , Receptores de Glicina/agonistas , Receptores de Glicina/metabolismo , Substituição de Aminoácidos , Animais , Feminino , Humanos , Oócitos/citologia , Mutação Puntual , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Receptores de Glicina/genética , Xenopus laevis
6.
J Neurochem ; 106(3): 1337-49, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18485105

RESUMO

The present studies used increased atmospheric pressure in place of a traditional pharmacological antagonist to probe the molecular sites and mechanisms of ethanol action in glycine receptors (GlyRs). Based on previous studies, we tested the hypothesis that physical-chemical properties at position 52 in extracellular domain Loop 2 of alpha1GlyRs, or the homologous alpha2GlyR position 59, determine sensitivity to ethanol and pressure antagonism of ethanol. Pressure antagonized ethanol in alpha1GlyRs that contain a non-polar residue at position 52, but did not antagonize ethanol in receptors with a polar residue at this position. Ethanol sensitivity in receptors with polar substitutions at position 52 was significantly lower than GlyRs with non-polar residues at this position. The alpha2T59A mutation switched sensitivity to ethanol and pressure antagonism in the WTalpha2GlyR, thereby making it alpha1-like. Collectively, these findings indicate that (i) polarity at position 52 plays a key role in determining sensitivity to ethanol and pressure antagonism of ethanol; (ii) the extracellular domain in alpha1- and alpha2GlyRs is a target for ethanol action and antagonism and (iii) there is structural-functional homology across subunits in Loop 2 of GlyRs with respect to their roles in determining sensitivity to ethanol and pressure antagonism of ethanol. These findings should help in the development of pharmacological agents that antagonize ethanol.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Etanol/administração & dosagem , Líquido Extracelular/efeitos dos fármacos , Receptores de Glicina/antagonistas & inibidores , Receptores de Glicina/química , Animais , Líquido Extracelular/metabolismo , Feminino , Humanos , Oócitos , Estrutura Terciária de Proteína/efeitos dos fármacos , Receptores de Glicina/metabolismo , Xenopus laevis
7.
Alcohol Clin Exp Res ; 32(5): 777-84, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18336632

RESUMO

BACKGROUND: The pathological effects of high alcohol (ethanol) consumption on gastrointestinal and hepatic systems are well recognized. However, the effects of ethanol intake on gastric and intestinal absorption and transport systems remain unclear. The present study investigates the effects of ethanol on the human peptide transporter 1 (hPepT1) which mediates the transport of di-and tripeptides as well as several orally administered peptidomimetic drugs such as beta-lactam antibiotics (e.g., penicillin), angiotensin-converting enzyme inhibitors, the anti-neoplastic agent bestatin, and prodrugs of acyclovir. METHODS: Xenopus oocytes were injected with hPepT1 cRNA and incubated for 3 to 10 days. Currents induced by glycyl-sarcosine (Gly-Sar), Ala-Ala (dipeptides), penicillin and enalapril measured in the presence or absence of ethanol were determined using an 8-channel 2-electrode voltage clamp system, with a membrane potential of -70 mV and 11 voltage steps of 100 milliseconds (from +50 mV to -150 mV in -20 mV increments). RESULTS: Ethanol (200 mM) inhibited Gly-Sar and Ala-Ala currents by 42 and 30%, respectively, with IC(50)s of 184 and 371 mM, respectively. Ethanol reduced maximal transport capacity (I(max)) of hPepT1 for Gly-Sar without affecting Gly-Sar binding affinity (K(0.5) and Hill coefficient). Penicillin- and enalapril-induced currents were significantly less than those induced by dipeptides and were not inhibited by ethanol. CONCLUSION: Ethanol significantly reduced transport of dipeptides via a reduction in transport capacity, rather than competing for binding sites in hPepT1. Ethanol inhibition or alteration of transport function may be a primary causative factor contributing to both the nutritional deficits as well as the immunological deficiencies that many alcoholics experience including alcohol liver disease and brain damage.


Assuntos
Etanol/farmacologia , Simportadores/antagonistas & inibidores , Inibidores da Enzima Conversora de Angiotensina/farmacocinética , Animais , Antibacterianos/farmacocinética , Dipeptídeos/metabolismo , Eletrofisiologia , Enalapril/farmacocinética , Etanol/farmacocinética , Humanos , Intestino Delgado/metabolismo , Oócitos/metabolismo , Penicilinas/farmacocinética , Transportador 1 de Peptídeos , Ratos , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...