Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurodegener ; 16(1): 13, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663561

RESUMO

BACKGROUND: Physiological disturbances in cortical network excitability and plasticity are established and widespread in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients, including those harbouring the C9ORF72 repeat expansion (C9ORF72RE) mutation - the most common genetic impairment causal to ALS and FTD. Noting that perturbations in cortical function are evidenced pre-symptomatically, and that the cortex is associated with widespread pathology, cortical dysfunction is thought to be an early driver of neurodegenerative disease progression. However, our understanding of how altered network function manifests at the cellular and molecular level is not clear. METHODS: To address this we have generated cortical neurons from patient-derived iPSCs harbouring C9ORF72RE mutations, as well as from their isogenic expansion-corrected controls. We have established a model of network activity in these neurons using multi-electrode array electrophysiology. We have then mechanistically examined the physiological processes underpinning network dysfunction using a combination of patch-clamp electrophysiology, immunocytochemistry, pharmacology and transcriptomic profiling. RESULTS: We find that C9ORF72RE causes elevated network burst activity, associated with enhanced synaptic input, yet lower burst duration, attributable to impaired pre-synaptic vesicle dynamics. We also show that the C9ORF72RE is associated with impaired synaptic plasticity. Moreover, RNA-seq analysis revealed dysregulated molecular pathways impacting on synaptic function. All molecular, cellular and network deficits are rescued by CRISPR/Cas9 correction of C9ORF72RE. Our study provides a mechanistic view of the early dysregulated processes that underpin cortical network dysfunction in ALS-FTD. CONCLUSION: These findings suggest synaptic pathophysiology is widespread in ALS-FTD and has an early and fundamental role in driving altered network function that is thought to contribute to neurodegenerative processes in these patients. The overall importance is the identification of previously unidentified defects in pre and postsynaptic compartments affecting synaptic plasticity, synaptic vesicle stores, and network propagation, which directly impact upon cortical function.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/metabolismo , Demência Frontotemporal/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Mutação/genética , Doenças Neurodegenerativas/metabolismo , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA/genética , Demência Frontotemporal/genética , Humanos , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/genética
2.
Brain Commun ; 3(4): fcab255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35350711

RESUMO

Oligodendrocytes are implicated in amyotrophic lateral sclerosis pathogenesis and display transactive response DNA-binding protein-43 (TDP-43) pathological inclusions. To investigate the cell autonomous consequences of TDP-43 mutations on human oligodendrocytes, we generated oligodendrocytes from patient-derived induced pluripotent stem cell lines harbouring mutations in the TARDBP gene, namely G298S and M337V. Through a combination of immunocytochemistry, electrophysiological assessment via whole-cell patch clamping, and three-dimensional cultures, no differences in oligodendrocyte differentiation, maturation or myelination were identified. Furthermore, expression analysis for monocarboxylate transporter 1 (a lactate transporter) coupled with a glycolytic stress test showed no deficit in lactate export. However, using confocal microscopy, we report TDP-43 mutation-dependent pathological mis-accumulation of TDP-43. Furthermore, using in vitro patch-clamp recordings, we identified functional Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor dysregulation in oligodendrocytes. Together, these findings establish a platform for further interrogation of the role of oligodendrocytes and cellular autonomy in TDP-43 proteinopathy.

3.
Stem Cell Res ; 49: 102046, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33096385

RESUMO

Microglia are resident tissue macrophages of the central nervous system (CNS) that arise from erythromyeloid progenitors during embryonic development. They play essential roles in CNS development, homeostasis and response to disease. Since microglia are difficult to procure from the human brain, several protocols have been developed to generate microglia-like cells from human induced pluripotent stem cells (hiPSCs). However, some concerns remain over the purity and quality of in vitro generated microglia. Here, we describe a new protocol that does not require co-culture with neural cells and yields cultures of 100% P2Y12+ 95% TMEM119+ ramified human microglia-like cells (hiPSC-MG). In the presence of neural precursor cell-conditioned media, hiPSC-MG expressed high levels of human microglia signature genes, including SALL1, CSF1R, P2RY12, TMEM119, TREM2, HEXB and SIGLEC11, as revealed by whole-transcriptome analysis. Stimulation of hiPSC-MG with lipopolysaccharide resulted in downregulation of P2Y12 expression, induction of IL1B mRNA expression and increase in cell capacitance. HiPSC-MG were phagocytically active and maintained their cell identity after transplantation into murine brain slices and human brain spheroids. Together, our new protocol for the generation of microglia-like cells from human iPSCs will facilitate the study of human microglial function in health and disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Microglia , Animais , Encéfalo , Humanos , Glicoproteínas de Membrana , Camundongos , Neurônios , Receptores Imunológicos
4.
Proc Natl Acad Sci U S A ; 115(52): E12407-E12416, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530649

RESUMO

The genetically heterogeneous spinocerebellar ataxias (SCAs) are caused by Purkinje neuron dysfunction and degeneration, but their underlying pathological mechanisms remain elusive. The Src family of nonreceptor tyrosine kinases (SFK) are essential for nervous system homeostasis and are increasingly implicated in degenerative disease. Here we reveal that the SFK suppressor Missing-in-metastasis (MTSS1) is an ataxia locus that links multiple SCAs. MTSS1 loss results in increased SFK activity, reduced Purkinje neuron arborization, and low basal firing rates, followed by cell death. Surprisingly, mouse models for SCA1, SCA2, and SCA5 show elevated SFK activity, with SCA1 and SCA2 displaying dramatically reduced MTSS1 protein levels through reduced gene expression and protein translation, respectively. Treatment of each SCA model with a clinically approved Src inhibitor corrects Purkinje neuron basal firing and delays ataxia progression in MTSS1 mutants. Our results identify a common SCA therapeutic target and demonstrate a key role for MTSS1/SFK in Purkinje neuron survival and ataxia progression.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia , Animais , Ataxia/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética , Proteínas/metabolismo , Células de Purkinje/fisiologia , Ataxias Espinocerebelares/metabolismo , Degenerações Espinocerebelares/metabolismo , Degenerações Espinocerebelares/fisiopatologia , Quinases da Família src/metabolismo
5.
Hum Mol Genet ; 27(15): 2614-2627, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741614

RESUMO

Loss of excitatory amino acid transporters (EAATs) has been implicated in a number of human diseases including spinocerebellar ataxias, Alzhiemer's disease and motor neuron disease. EAAT4 and GLAST/EAAT1 are the two predominant EAATs responsible for maintaining low extracellular glutamate levels and preventing neurotoxicity in the cerebellum, the brain region essential for motor control. Here using genetically modified mice we identify new critical roles for EAAT4 and GLAST/EAAT1 as modulators of Purkinje cell (PC) spontaneous firing patterns. We show high EAAT4 levels, by limiting mGluR1 signalling, are essential in constraining inherently heterogeneous firing of zebrin-positive PCs. Moreover mGluR1 antagonists were found to restore regular spontaneous PC activity and motor behaviour in EAAT4 knockout mice. In contrast, GLAST/EAAT1 expression is required to sustain normal spontaneous simple spike activity in low EAAT4 expressing (zebrin-negative) PCs by restricting NMDA receptor activation. Blockade of NMDA receptor activity restores spontaneous activity in zebrin-negative PCs of GLAST knockout mice and furthermore alleviates motor deficits. In addition both transporters have differential effects on PC survival, with zebrin-negative PCs more vulnerable to loss of GLAST/EAAT1 and zebrin-positive PCs more vulnerable to loss of EAAT4. These findings reveal that glutamate transporter dysfunction through elevated extracellular glutamate and the aberrant activation of extrasynaptic receptors can disrupt cerebellar output by altering spontaneous PC firing. This expands our understanding of disease mechanisms in cerebellar ataxias and establishes EAATs as targets for restoring homeostasis in a variety of neurological diseases where altered cerebellar output is now thought to play a key role in pathogenesis.


Assuntos
Cerebelo/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 4 de Aminoácido Excitatório/genética , Células de Purkinje/fisiologia , Animais , Ataxia/genética , Sobrevivência Celular/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 4 de Aminoácido Excitatório/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/citologia , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
6.
Nat Commun ; 9(1): 347, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367641

RESUMO

Mutations in C9ORF72 are the most common cause of familial amyotrophic lateral sclerosis (ALS). Here, through a combination of RNA-Seq and electrophysiological studies on induced pluripotent stem cell (iPSC)-derived motor neurons (MNs), we show that increased expression of GluA1 AMPA receptor (AMPAR) subunit occurs in MNs with C9ORF72 mutations that leads to increased Ca2+-permeable AMPAR expression and results in enhanced selective MN vulnerability to excitotoxicity. These deficits are not found in iPSC-derived cortical neurons and are abolished by CRISPR/Cas9-mediated correction of the C9ORF72 repeat expansion in MNs. We also demonstrate that MN-specific dysregulation of AMPAR expression is also present in C9ORF72 patient post-mortem material. We therefore present multiple lines of evidence for the specific upregulation of GluA1 subunits in human mutant C9ORF72 MNs that could lead to a potential pathogenic excitotoxic mechanism in ALS.


Assuntos
Proteína C9orf72/genética , Neurônios Motores/patologia , Receptores de AMPA/metabolismo , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/metabolismo , Sistemas CRISPR-Cas , Cálcio/metabolismo , Expansão das Repetições de DNA , Marcação de Genes , Humanos , Receptores de AMPA/genética , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia
7.
Hum Mol Genet ; 25(20): 4448-4461, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28173092

RESUMO

Clinical phenotypes of spinocerebellar ataxia type-5 (SCA5) and spectrin-associated autosomal recessive cerebellar ataxia type-1 (SPARCA1) are mirrored in mice lacking ß-III spectrin (ß-III-/-). One function of ß-III spectrin is the stabilization of the Purkinje cell-specific glutamate transporter EAAT4 at the plasma membrane. In ß-III-/- mice EAAT4 levels are reduced from an early age. In contrast levels of the predominant cerebellar glutamate transporter GLAST, expressed in Bergmann glia, only fall progressively from 3 months onwards. Here we elucidated the roles of these two glutamate transporters in cerebellar pathogenesis mediated through loss of ß-III spectrin function by studying EAAT4 and GLAST knockout mice as well as crosses of both with ß-III-/- mice. Our data demonstrate that EAAT4 loss, but not abnormal AMPA receptor composition, in young ß-III-/- mice underlies early Purkinje cell hyper-excitability and that subsequent loss of GLAST, superimposed on the earlier deficiency of EAAT4, is responsible for Purkinje cell loss and progression of motor deficits. Yet the loss of GLAST appears to be independent of EAAT4 loss, highlighting that other aspects of Purkinje cell dysfunction underpin the pathogenic loss of GLAST. Finally, our results demonstrate that Purkinje cells in the posterior cerebellum of ß-III-/- mice are most susceptible to the combined loss of EAAT4 and GLAST, with degeneration of proximal dendrites, the site of climbing fibre innervation, most pronounced. This highlights the necessity for efficient glutamate clearance from these regions and identifies dysregulation of glutamatergic neurotransmission particularly within the posterior cerebellum as a key mechanism in SCA5 and SPARCA1 pathogenesis.


Assuntos
Ataxia Cerebelar/metabolismo , Modelos Animais de Doenças , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 4 de Aminoácido Excitatório/metabolismo , Células de Purkinje/metabolismo , Espectrina/metabolismo , Ataxias Espinocerebelares/metabolismo , Animais , Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Transportador 1 de Aminoácido Excitatório/fisiologia , Transportador 4 de Aminoácido Excitatório/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Células de Purkinje/patologia , Espectrina/fisiologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
8.
Brain ; 138(Pt 7): 1817-32, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25981959

RESUMO

Cerebral palsy is a sporadic disorder with multiple likely aetiologies, but frequently considered to be caused by birth asphyxia. Genetic investigations are rarely performed in patients with cerebral palsy and there is little proven evidence of genetic causes. As part of a large project investigating children with ataxia, we identified four patients in our cohort with a diagnosis of ataxic cerebral palsy. They were investigated using either targeted next generation sequencing or trio-based exome sequencing and were found to have mutations in three different genes, KCNC3, ITPR1 and SPTBN2. All the mutations were de novo and associated with increased paternal age. The mutations were shown to be pathogenic using a combination of bioinformatics analysis and in vitro model systems. This work is the first to report that the ataxic subtype of cerebral palsy can be caused by de novo dominant point mutations, which explains the sporadic nature of these cases. We conclude that at least some subtypes of cerebral palsy may be caused by de novo genetic mutations and patients with a clinical diagnosis of cerebral palsy should be genetically investigated before causation is ascribed to perinatal asphyxia or other aetiologies.


Assuntos
Ataxia/genética , Paralisia Cerebral/genética , Doenças Genéticas Inatas/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Mutação Puntual , Canais de Potássio Shaw/genética , Espectrina/genética , Sequência de Bases , Criança , Pré-Escolar , Análise Mutacional de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Técnicas de Patch-Clamp , Análise de Sequência de DNA
9.
Hum Mol Genet ; 23(14): 3875-82, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24603075

RESUMO

Beta III spectrin is present throughout the elaborate dendritic tree of cerebellar Purkinje cells and is required for normal neuronal morphology and cell survival. Spinocerebellar ataxia type 5 (SCA5) and spectrin associated autosomal recessive cerebellar ataxia type 1 are human neurodegenerative diseases involving progressive gait ataxia and cerebellar atrophy. Both disorders appear to result from loss of ß-III spectrin function. Further elucidation of ß-III spectrin function is therefore needed to understand disease mechanisms and identify potential therapeutic options. Here, we report that ß-III spectrin is essential for the recruitment and maintenance of ankyrin R at the plasma membrane of Purkinje cell dendrites. Two SCA5-associated mutations of ß-III spectrin both reduce ankyrin R levels at the cell membrane. Moreover, a wild-type ß-III spectrin/ankyrin-R complex increases sodium channel levels and activity in cell culture, whereas mutant ß-III spectrin complexes fail to enhance sodium currents. This suggests impaired ability to form stable complexes between the adaptor protein ankyrin R and its interacting partners in the Purkinje cell dendritic tree is a key mechanism by which mutant forms of ß-III spectrin cause ataxia, initially by Purkinje cell dysfunction and exacerbated by subsequent cell death.


Assuntos
Anquirinas/metabolismo , Células de Purkinje/metabolismo , Canais de Sódio/fisiologia , Espectrina/genética , Espectrina/metabolismo , Ataxias Espinocerebelares/genética , Animais , Membrana Celular/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Mutação , Estabilidade Proteica , Células de Purkinje/ultraestrutura , Ratos , Ratos Sprague-Dawley
10.
Nat Commun ; 4: 2394, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23999152

RESUMO

Signalling cascades control multiple aspects of presynaptic function. Synaptic vesicle endocytosis was assumed to be exempt from modulation, due to its essential role maintaining synaptic vesicle supply and thus neurotransmission. Here we show that brain-derived neurotrophic factor arrests the rephosphorylation of the endocytosis enzyme dynamin I via an inhibition of glycogen synthase kinase 3. This event results in a selective inhibition of activity-dependent bulk endocytosis during high-intensity firing. Furthermore, the continued presence of brain-derived neurotrophic factor alleviates the rundown of neurotransmission during high activity. Thus, synaptic strength can be modulated by extracellular signalling molecules via a direct inhibition of a synaptic vesicle endocytosis mode.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dinamina I/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Cromonas/farmacologia , Endocitose/fisiologia , Inibidores Enzimáticos/farmacologia , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/citologia , Masculino , Morfolinas/farmacologia , Neurotransmissores/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
11.
J Neurosci ; 31(46): 16581-90, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22090485

RESUMO

Mutations in the gene encoding ß-III spectrin give rise to spinocerebellar ataxia type 5, a neurodegenerative disease characterized by progressive thinning of the molecular layer, loss of Purkinje cells and increasing motor deficits. A mouse lacking full-length ß-III spectrin (ß-III⁻/⁻) displays a similar phenotype. In vitro and in vivo analyses of Purkinje cells lacking ß-III spectrin, reveal a critical role for ß-III spectrin in Purkinje cell morphological development. Disruption of the normally well ordered dendritic arborization occurs in Purkinje cells from ß-III⁻/⁻ mice, specifically showing a loss of monoplanar organization, smaller average dendritic diameter and reduced densities of Purkinje cell spines and synapses. Early morphological defects appear to affect distribution of dendritic, but not axonal, proteins. This study confirms that thinning of the molecular layer associated with disease pathogenesis is a consequence of Purkinje cell dendritic degeneration, as Purkinje cells from 8-month-old ß-III⁻/⁻ mice have drastically reduced dendritic volumes, surface areas and total dendritic lengths compared with 5- to 6-week-old ß-III⁻/⁻ mice. These findings highlight a critical role of ß-III spectrin in dendritic biology and are consistent with an early developmental defect in ß-III⁻/⁻ mice, with abnormal Purkinje cell dendritic morphology potentially underlying disease pathogenesis.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Dendritos/ultraestrutura , Espinhas Dendríticas/metabolismo , Células de Purkinje/citologia , Espectrina/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Calbindinas , Transportador 4 de Aminoácido Excitatório/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Transportador de Glucose Tipo 2/metabolismo , Técnicas In Vitro , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/genética , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Canal de Sódio Disparado por Voltagem NAV1.6 , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Patch-Clamp , Proteínas de Transporte de Fosfato/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Coloração pela Prata/métodos , Canais de Sódio/metabolismo , Espectrina/deficiência , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
12.
Hum Mol Genet ; 19(18): 3634-41, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20603325

RESUMO

Spinocerebellar ataxia type 5 (SCA5) is an autosomal dominant neurodegenerative disorder caused by mutations in beta-III spectrin. A mouse lacking full-length beta-III spectrin has a phenotype closely mirroring symptoms of SCA5 patients. Here we report the analysis of heterozygous animals, which show no signs of ataxia or cerebellar degeneration up to 2 years of age. This argues against haploinsufficiency as a disease mechanism and points towards human mutations having a dominant-negative effect on wild-type (WT) beta-III spectrin function. Cell culture studies using beta-III spectrin with a mutation associated with SCA5 (L253P) reveal that mutant protein, instead of being found at the cell membrane, appears trapped in the cytoplasm associated with the Golgi apparatus. Furthermore, L253P beta-III spectrin prevents correct localization of WT beta-III spectrin and prevents EAAT4, a protein known to interact with beta-III spectrin, from reaching the plasma membrane. Interaction of beta-III spectrin with Arp1, a subunit of the dynactin-dynein complex, is also lost with the L253P substitution. Despite intracellular accumulation of proteins, this cellular stress does not induce the unfolded protein response, implying the importance of membrane protein loss in disease pathogenesis. Incubation at lower temperature (25 degrees C) rescues L253P beta-III spectrin interaction with Arp1 and normal protein trafficking to the membrane. These data provide evidence for a dominant-negative effect of an SCA5 mutation and show for the first time that trafficking of both beta-III spectrin and EAAT4 from the Golgi is disrupted through failure of the L253P mutation to interact with Arp1.


Assuntos
Complexo de Golgi/metabolismo , Proteínas dos Microfilamentos/metabolismo , Mutação de Sentido Incorreto , Espectrina/genética , Espectrina/metabolismo , Ataxias Espinocerebelares/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Complexo de Golgi/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Ligação Proteica , Transporte Proteico , Ataxias Espinocerebelares/genética
13.
J Neurosci ; 30(14): 4857-67, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20371805

RESUMO

Mutations in SPTBN2, the gene encoding beta-III spectrin, cause spinocerebellar ataxia type 5 in humans (SCA5), a neurodegenerative disorder resulting in loss of motor coordination. How these mutations give rise to progressive ataxia and what the precise role beta-III spectrin plays in normal cerebellar physiology are unknown. We developed a mouse lacking full-length beta-III spectrin and found that homozygous mice reproduced features of SCA5 including gait abnormalities, tremor, deteriorating motor coordination, Purkinje cell loss, and cerebellar atrophy (molecular layer thinning). In vivo analysis reveals an age-related reduction in simple spike firing rate in surviving beta-III(-/-) Purkinje cells, whereas in vitro studies show these neurons to have reduced spontaneous firing, smaller sodium currents, and dysregulation of glutamatergic neurotransmission. Our data suggest an early loss of EAAT4- (protein interactor of beta-III spectrin) and a subsequent loss of GLAST-mediated uptake may play a role in neuronal pathology. These findings implicate a loss of beta-III spectrin function in SCA5 pathogenesis and indicate that there are at least two physiological effects of beta-III spectrin loss that underpin a progressive loss of inhibitory cerebellar output, namely an intrinsic Purkinje cell membrane defect due to reduced sodium currents and alterations in glutamate signaling.


Assuntos
Atividade Motora/genética , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Espectrina/deficiência , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Potenciais de Ação/genética , Animais , Atrofia/genética , Cerebelo/patologia , Marcha/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Espectrina/genética , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/fisiopatologia , Tremor/genética
14.
Eur J Neurosci ; 21(3): 679-91, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15733086

RESUMO

A 'leak' potassium (K+) conductance (gK(Leak)) modulated by amine neurotransmitters is a major determinant of neonatal rat facial motoneuron excitability. Although the molecular identity of gK(Leak) is unknown, TASK-1 and TASK-3 channel mRNA is found in facial motoneurons. External pH, across the physiological range (pH 6-8), and noradrenaline (NA) modulated a conductance that displayed a relatively linear current/voltage relationship and reversed at the K+ equilibrium potential, consistent with inhibition of gK(Leak). The pH-sensitive current (I(pH)), was maximal around pH 8, fully inhibited near pH 6 and was described by a modified Hill equation with a pK of 7.1. The NA-induced current (I(NA)) was occluded at pH 6 and enhanced at pH 7.7. The TASK-1 selective inhibitor anandamide (10 microM), its stable analogue methanandamide (10 microM), the TASK-3 selective inhibitor ruthenium red (10 microM) and Zn2+ (100-300 microM) all failed to alter facial motoneuron membrane current or block I(NA) or I(pH). Isoflurane, a volatile anaesthetic that enhances heteromeric TASK-1/TASK-3 currents, increased gK(Leak). Ba2+, Cs+ and Rb+ blocked I(NA) and I(pH) voltage-dependently with maximal block at hyperpolarized potentials. 4-Aminopyridine (4-AP, 4 mM) voltage-independently blocked I(NA) and I(pH). In summary, gK(Leak) displays some of the properties of a TASK-like conductance. The linearity of gK(Leak) and an independence of activation on external [K+] suggests against pH-sensitive inwardly rectifying K+ channels. Our results argue against principal contributions to gK(Leak) by homomeric TASK-1 or TASK-3 channels, while the potentiation by isoflurane supports a predominant role for heterodimeric TASK-1/TASK-3 channels.


Assuntos
Aminas Biogênicas/fisiologia , Músculos Faciais/fisiologia , Neurônios Motores/fisiologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Canais de Potássio/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Cerebelo/fisiologia , Feminino , Concentração de Íons de Hidrogênio , Masculino , Proteínas do Tecido Nervoso , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...