Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 136(5): 1015-1039, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38328821

RESUMO

The efficacy of the NASA SPRINT exercise countermeasures program for quadriceps (vastus lateralis) and triceps surae (soleus) skeletal muscle health was investigated during 70 days of simulated microgravity. Individuals completed 6° head-down-tilt bedrest (BR, n = 9), bedrest with resistance and aerobic exercise (BRE, n = 9), or bedrest with resistance and aerobic exercise and low-dose testosterone (BRE + T, n = 8). All groups were periodically tested for muscle (n = 9 times) and aerobic (n = 4 times) power during bedrest. In BR, surprisingly, the typical bedrest-induced decrements in vastus lateralis myofiber size and power were either blunted (myosin heavy chain, MHC I) or eliminated (MHC IIa), along with no change (P > 0.05) in %MHC distribution and blunted quadriceps atrophy. In BRE, MHC I (vastus lateralis and soleus) and IIa (vastus lateralis) contractile performance was maintained (P > 0.05) or increased (P < 0.05). Vastus lateralis hybrid fiber percentage was reduced (P < 0.05) and energy metabolism enzymes and capillarization were generally maintained (P > 0.05), while not all of these positive responses were observed in the soleus. Exercise offsets 100% of quadriceps and approximately two-thirds of soleus whole muscle mass loss. Testosterone (BRE + T) did not provide any benefit over exercise alone for either muscle and for some myocellular parameters appeared detrimental. In summary, the periodic testing likely provided a partial exercise countermeasure for the quadriceps in the bedrest group, which is a novel finding given the extremely low exercise dose. The SPRINT exercise program appears to be viable for the quadriceps; however, refinement is needed to completely protect triceps surae myocellular and whole muscle health for astronauts on long-duration spaceflights.NEW & NOTEWORTHY This study provides unique exercise countermeasures development information for astronauts on long-duration spaceflights. The NASA SPRINT program was protective for quadriceps myocellular and whole muscle health, whereas the triceps surae (soleus) was only partially protected as has been shown with other programs. The bedrest control group data may provide beneficial information for overall exercise dose and targeting fast-twitch muscle fibers. Other unique approaches for the triceps surae are needed to supplement existing exercise programs.


Assuntos
Exercício Físico , Músculo Esquelético , Cadeias Pesadas de Miosina , Músculo Quadríceps , Simulação de Ausência de Peso , Humanos , Masculino , Músculo Quadríceps/fisiologia , Músculo Quadríceps/metabolismo , Simulação de Ausência de Peso/métodos , Adulto , Exercício Físico/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , United States National Aeronautics and Space Administration , Estados Unidos , Repouso em Cama/efeitos adversos , Testosterona/metabolismo , Testosterona/sangue , Voo Espacial/métodos , Atrofia Muscular/prevenção & controle , Atrofia Muscular/fisiopatologia , Treinamento Resistido/métodos , Ausência de Peso/efeitos adversos , Força Muscular/fisiologia
2.
J Appl Physiol (1985) ; 136(3): 482-491, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205547

RESUMO

This study examined the effects of aging and lifelong aerobic exercise on innate immune system components in the skeletal muscle of healthy women in the basal state and after an unaccustomed resistance exercise (RE) challenge. We also made exploratory between-sex comparisons with our previous report on men. Three groups of women were studied: young exercisers (YE, n = 10, 25 ± 1 yr, V̇o2max: 44 ± 2 mL/kg/min), lifelong aerobic exercisers with a 48 ± 2 yr training history (LLE, n = 7, 72 ± 2 yr, V̇o2max: 26 ± 2 mL/kg/min), and old healthy nonexercisers (OH, n = 10, 75 ± 1 yr, V̇o2max: 18 ± 1 mL/kg/min). Ten Toll-like receptors (TLRs)1-10, TLR adaptors (Myd88, TRIF), and NF-κB pathway components (IκBα, IKKß) were assessed at the mRNA level in vastus lateralis biopsies before and 4 h after RE [3×10 repetitions, 70% 1-repetition maximum (1RM)]. Basal TLR1-10 expression was minimally influenced by age or LLE in women (TLR9 only; OH > YE, +43%, P < 0.05; OH > LLE, +30%, P < 0.10) and was on average 24% higher in women versus men. Similarly, basal adaptor expression was not influenced (P > 0.05) by age or LLE in women but was on average 26% higher (myeloid differentiation primary response 88, Myd88) and 23% lower [Toll interleukin (IL)-1 receptor-containing adaptor-inducing interferon-γ, TRIF] in women versus men. RE-induced changes in women, independent of the group, in TLR3, TLR4, TLR6 (∼2.1-fold, P < 0.05), Myd88 (∼1.2-fold, P < 0.10), and IκBα (∼0.3-fold, P < 0.05). Although there were some similar RE responses in men (TLR4: 2.1-fold, Myd88: 1.2-fold, IκBα: 0.4-fold), several components responded only in men to RE (TLR1, TLR8, TRIF, and IKKß). Our findings support the sexual dimorphism of immunity, with women having greater basal skeletal muscle TLR expression and differential response to unaccustomed exercise than men.NEW & NOTEWORTHY We recently reported that aging increases basal expression of many Toll-like receptors (TLRs) in men and lifelong aerobic exercise does not prevent this effect. In addition, a resistance exercise (RE) challenge increased the expression of many TLRs. Here we show that basal TLR expression is minimally influenced by aging in women and findings support the sexual dimorphism of immunity, with women having greater basal skeletal muscle TLR expression and a differential response to unaccustomed exercise than men.


Assuntos
Quinase I-kappa B , Receptor 1 Toll-Like , Masculino , Humanos , Feminino , Inibidor de NF-kappaB alfa , Fator 88 de Diferenciação Mieloide , Receptor 4 Toll-Like , Músculo Esquelético , Envelhecimento , Exercício Físico , Proteínas Adaptadoras de Transdução de Sinal , Imunidade Inata , Proteínas Adaptadoras de Transporte Vesicular
3.
Physiol Rep ; 11(22): e15859, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37985201

RESUMO

BMI-matched normal- (NGT, n = 10, 41 ± 4y, 35.6 ± 3.0 kg/m2 ) and abnormal-glucose-tolerant (AGT, n = 16, 51 ± 3y, 34.3 ± 1.5 kg/m2 ) participants were evaluated for body composition, metabolic health (oral glucose tolerance test [OGTT]), and VO2 max. Participants also completed a treadmill walking test at 65% VO2 max for 30 min. Total sRAGE, esRAGE, sTLR2, and sTLR4 were assessed via ELISA, and cRAGE was calculated. AGT exhibited greater (p < 0.05) body fat % (+24%), fasting plasma glucose (+37%), OGTT AUC (+59%), and HOMA-IR (+55%) and lower (p < 0.05) VO2 max (-24%). sTLR2 was 33% lower in AGT than NGT (main effect, p = 0.034). However, sTLR2 did not change (p > 0.05) following AE. sTLR4 tended to be 36% lower in AGT than NGT (main effect, p = 0.096) and did not change following AE (p > 0.05). Total sRAGE and isoforms were similar (p > 0.05) between groups and did not change following AE (p > 0.05). sTLR2 was correlated with (p < 0.05) basal BG (r = -0.505) and OGTT AUC (r = -0.687). sTLR4 was correlated with basal BG (p < 0.10, r = -0.374) and OGTT AUC (p < 0.05, r = -0.402). Linear regressions were predictive of sTLRs in the basal state (sTLR2: R2 = 0.641, p = 0.01; sTLR4: R2 = 0.566, p = 0.037) and after acute exercise state (sTLR2: R2 = 0.681, p = 0.004, sTLR4: R2 = 0.568, p = 0.036).These findings show circulating sTLR profiles are disrupted in AGT and acute AE minimally modulates their levels.


Assuntos
Tecido Adiposo , Composição Corporal , Humanos , Teste de Tolerância a Glucose , Tecido Adiposo/metabolismo , Glucose/metabolismo , Exercício Físico , Glicemia/metabolismo
4.
J Appl Physiol (1985) ; 135(4): 849-862, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37675469

RESUMO

Nearly 40% of Americans have obesity and are at increased risk for developing type 2 diabetes. Skeletal muscle is responsible for >80% of insulin-stimulated glucose uptake that is attenuated by the inflammatory milieu of obesity and augmented by aerobic exercise. The receptor for advanced glycation endproducts (RAGE) is an inflammatory receptor directly linking metabolic dysfunction with inflammation. Circulating soluble isoforms of RAGE (sRAGE) formed either by proteolytic cleavage (cRAGE) or alternative splicing (esRAGE) act as decoys for RAGE ligands, thereby counteracting RAGE-mediated inflammation. We aimed to determine if RAGE expression or alternative splicing of RAGE is altered by obesity in muscle, and whether acute aerobic exercise (AE) modifies RAGE and sRAGE. Young (20-34 yr) participants without [n = 17; body mass index (BMI): 22.6 ± 2.6 kg/m2] and with obesity (n = 7; BMI: 32.8 ± 2.9 kg/m2) performed acute aerobic exercise (AE) at 40%, 65%, or 80% of maximal aerobic capacity (V̇o2max; mL/kg/min) on separate visits. Blood was taken before and 30 min after each AE bout. Muscle biopsy samples were taken before, 30 min, and 3 h after the 80% V̇o2max AE bout. Individuals with obesity had higher total RAGE and esRAGE mRNA and RAGE protein (P < 0.0001). In addition, RAGE and esRAGE transcripts correlated to transcripts of the NF-κB subunit P65 (P < 0.05). There was no effect of AE on total RAGE or esRAGE transcripts, or RAGE protein (P > 0.05), and AE tended to decrease circulating sRAGE in particular at lower intensities of exercise. RAGE expression is exacerbated in skeletal muscle with obesity, which may contribute to muscle inflammation via NF-κB. Future work should investigate the consequences of increased skeletal muscle RAGE on the development of obesity-related metabolic dysfunction and potential mitigating strategies.NEW & NOTEWORTHY This study is the first to investigate the effects of aerobic exercise intensity on circulating sRAGE isoforms, muscle RAGE protein, and muscle RAGE splicing. sRAGE isoforms tended to diminish with exercise, although this effect was attenuated with increasing exercise intensity. Muscle RAGE protein and gene expression were unaffected by exercise. However, individuals with obesity displayed nearly twofold higher muscle RAGE protein and gene expression, which positively correlated with expression of the P65 subunit of NF-κB.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Adulto Jovem , Exercício Físico , Inflamação , Músculo Esquelético , NF-kappa B , Receptor para Produtos Finais de Glicação Avançada
5.
J Appl Physiol (1985) ; 135(3): 508-518, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471216

RESUMO

The benefits of exercise involve skeletal muscle redox state alterations of nicotinamide adenine dinucleotide (NAD) and flavin adenine dinucleotide (FAD). We determined the fiber-specific effects of acute exercise on the skeletal muscle redox state in healthy adults. Muscle biopsies were obtained from 19 participants (11 M, 8 F; 26 ± 4 yr) at baseline (fasted) and 30 min and 3 h after treadmill exercise at 80% maximal oxygen consumption (V̇o2max). Muscle samples were probed for autofluorescence of NADH (excitation at 340-360 nm) and oxidized flavoproteins (Fp; excitation at 440-470 nm) and subsequently, fiber typed to quantify the redox signatures of individual muscle fibers. Redox state was calculated as the oxidation-to-reduction redox ratio: Fp/(Fp + NADH). At baseline, pair-wise comparisons revealed that the redox ratio of myosin heavy chain (MHC) I fibers was 7.2% higher than MHC IIa (P = 0.023, 95% CI: 5.2, 9.2%) and the redox ratio of MHC IIa was 8.0% higher than MHC IIx (P = 0.035, 95% CI: 6.8, 9.2%). MHC I fibers also displayed greater NADH intensity than MHC IIx (P = 0.007) and greater Fp intensity than both MHC IIa (P = 0.019) and MHC IIx (P < 0.0001). Fp intensities increased in all fiber types (main effect, P = 0.039) but redox ratios did not change (main effect, P = 0.483) 30 min after exercise. The change in redox ratio was positively correlated with capillary density in MHC I (rho = 0.762, P = 0.037), MHC IIa fibers (rho = 0.881, P = 0.007), and modestly in MHC IIx fibers (rho = 0. 771, P = 0.103). These findings support the use of redox autofluorescence to interrogate skeletal muscle metabolism.NEW & NOTEWORTHY This study is the first to use autofluorescent imaging to describe differential redox states within human skeletal muscle fiber types with exercise. Our findings highlight an easy and efficacious technique for assessing skeletal muscle redox in humans.


Assuntos
Músculo Esquelético , NAD , Adulto , Humanos , NAD/metabolismo , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Exercício Físico/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Oxirredução
6.
J Ren Nutr ; 33(1): 181-192, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34923111

RESUMO

OBJECTIVE: The goal of this investigation was to evaluate circulating and skeletal muscle inflammatory biomarkers between maintenance hemodialysis (MHD) and demographic-matched control subjects (CON) before and after ingestion of a protein-rich meal. DESIGN AND METHODS: CON (n = 8; 50 ± 2 years; 31 ± 1 kg/m2) and MHD patients (n = 8; 56 ± 5 years; 32 ± 2 kg/m2) underwent a basal blood draw and muscle biopsy and serial blood draws after the ingestion of a mixed meal on a nondialysis day. Plasma advanced glycation end products (AGEs) and markers of oxidation were assessed via liquid chromatography-tandem mass spectrometry before and after the meal (+240 min). Circulating inflammatory cytokines and soluble receptors for AGE (sRAGE) isoforms (endogenous secretory RAGEs and cleaved RAGEs) were determined before and after the meal (+240 min). Basal muscle was probed for inflammatory cytokines and protein expression of related signaling components (RAGE, Toll-like receptor 4, oligosaccharyltransferase subunit 48, TIR-domain-containing adapter-inducing interferon-ß, total IκBα, and pIκBα). RESULTS: Basal circulating AGEs were 7- to 343-fold higher (P < .001) in MHD than those in CON, but only MG-H1 increased in CON after the meal (P < .001). There was a group effect (MHD > CON) for total sRAGEs (P = .02) and endogenous secretory RAGEs (P < .001) and a trend for cleaved RAGEs (P=.09), with no meal effect. In addition, there was a group effect (MHD < CON; P < .05) for circulating fractalkine, interleukin (IL)10, IL17A, and IL1ß and a trend (P < .10) for IL6 and macrophage inflammatory protein 1 alpha, whereas tumor necrosis factor alpha was higher in MHD (P < .001). In muscle, Toll-like receptor 4 (P = .03), TIR-domain-containing adapter-inducing interferon-ß (P = .002), and oligosaccharyltransferase subunit 48 (P = .02) expression was lower in MHD than that in CON, whereas IL6 was higher (P = .01) and IL8 (P = .08) tended to be higher in MHD. CONCLUSION: Overall, MHD exhibited an exaggerated, circulating, and skeletal muscle inflammatory biomarker environment, and the meal did not appreciably affect the inflammatory status.


Assuntos
Produtos Finais de Glicação Avançada , Receptor 4 Toll-Like , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Interleucina-6 , Biomarcadores , Interferon beta , Ingestão de Alimentos
7.
J Funct Morphol Kinesiol ; 7(4)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36278748

RESUMO

The cardiovascular and skeletal muscle systems are intrinsically interconnected, sharing the goal of delivering oxygen to metabolically active tissue. Deficiencies within those systems that affect oxygen delivery to working tissues are a hallmark of advancing age. Oxygen delivery and utilization are reflected as muscle oxygen saturation (SmO2) and are assessed using near-infrared resonance spectroscopy (NIRS). SmO2 has been observed to be reduced by ~38% at rest, ~24% during submaximal exercise, and ~59% during maximal exercise with aging (>65 y). Furthermore, aging prolongs restoration of SmO2 back to baseline by >50% after intense exercise. Regulatory factors that contribute to reduced SmO2 with age include blood flow, capillarization, endothelial cells, nitric oxide, and mitochondrial function. These mechanisms are governed by reactive oxygen species (ROS) at the cellular level. However, mishandling of ROS with age ultimately leads to alterations in structure and function of the regulatory factors tasked with maintaining SmO2. The purpose of this review is to provide an update on the current state of the literature regarding age-related effects in SmO2. Furthermore, we attempt to bridge the gap between SmO2 and associated underlying mechanisms affected by aging.

8.
J Appl Physiol (1985) ; 129(6): 1493-1504, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054657

RESUMO

Low muscle mass and frailty are especially prevalent in older women and may be accelerated by age-related inflammation. Habitual physical activity throughout the life span (lifelong exercise) may prevent muscle inflammation and associated pathologies, but this is unexplored in women. This investigation assessed basal and acute exercise-induced inflammation in three cohorts of women: young exercisers (YE, n = 10, 25 ± 1 yr, [Formula: see text]: 44 ± 2 mL/kg/min, quadriceps size: 59 ± 2 cm2), old healthy nonexercisers (OH, n = 10, 75 ± 1 yr, [Formula: see text]: 18 ± 1 mL/kg/min, quadriceps size: 40 ± 1 cm2), and lifelong aerobic exercisers with a 48 ± 2 yr aerobic training history (LLE, n = 7, 72 ± 2 yr, [Formula: see text]: 26 ± 2 mL/kg/min, quadriceps size: 42 ± 2 cm2). Resting serum IL-6, TNF-α, C-reactive protein (CRP), and IGF-1 were measured. Vastus lateralis muscle biopsies were obtained at rest (basal) and 4 h after an acute exercise challenge (3 × 10 reps, 70% 1-repetition maximum) to assess gene expression of cytokines (IL-6, TNF-α, IL-1ß, IL-10, IL-4, IL-1Ra, TGF-ß), chemokines (IL-8, MCP-1), cyclooxygenase enzymes (COX-1, COX-2), prostaglandin E2 synthases (mPGES-1, cPGES) and receptors (EP3-4), and macrophage markers (CD16b, CD163), as well as basal macrophage abundance (CD68+ cells). The older cohorts (LLE + OH combined) demonstrated higher muscle IL-6 and COX-1 (P ≤ 0.05) than YE, whereas LLE expressed lower muscle IL-1ß (P ≤ 0.05 vs. OH). Acute exercise increased muscle IL-6 expression in YE only, whereas the older cohorts combined had the higher postexercise expression of IL-8 and TNF-α (P ≤ 0.05 vs. YE). Only LLE had increased postexercise expression of muscle IL-1ß and MCP-1 (P ≤ 0.05 vs. preexercise). Thus, aging in women led to mild basal and exercise-induced inflammation that was unaffected by lifelong aerobic exercise, which may have implications for long-term function and adaptability.NEW & NOTEWORTHY We previously reported a positive effect of lifelong exercise on skeletal muscle inflammation in aging men. This parallel investigation in women revealed that lifelong exercise did not protect against age-related increases in circulating or muscle inflammation and that preparedness to handle loading stress was not preserved by lifelong exercise. Further investigation is necessary to understand why lifelong aerobic exercise may not confer the same anti-inflammatory benefits in women as it does in men.


Assuntos
Envelhecimento , Exercício Físico , Idoso , Feminino , Humanos , Inflamação , Longevidade , Masculino , Músculo Esquelético
9.
J Appl Physiol (1985) ; 129(6): 1483-1492, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32969782

RESUMO

The purpose of this investigation was to evaluate the effects of aging and lifelong exercise on skeletal muscle components of the innate immune system. Additionally, the effects of an acute resistance exercise (RE) challenge were explored. Three groups of men were studied: young exercisers (YE: n = 10, 25 ± 1 yr; V̇o2max: 53 ± 3 mL/kg/min; quadriceps size: 78 ± 3 cm2), lifelong aerobic exercisers with a 53 ± 1 yr training history (LLE; n = 21, 74 ± 1 yr; V̇o2max: 34 ± 1 mL/kg/min; quadriceps size: 67 ± 2 cm2), and old healthy nonexercisers (OH: n = 10, 75 ± 1 yr; V̇o2max: 22 ± 1 mL/kg/min, quadriceps size: 56 ± 3 cm2). Vastus lateralis muscle biopsies were obtained in the basal state and 4 h after RE (3 × 10 reps, 70% of 1 repetition maximum) to assess Toll-like receptors (TLR)1-10, TLR adaptors (Myd88 and TRIF), and NF-κB pathway components (IκΒα and IKKß) mRNA expression. Basal TLR3, TLR6, and TLR7 tended to be higher (P ≤ 0.10) with aging (LLE and OH combined). In general, RE increased expression of TLR1 and TLR8 (P ≤ 0.10) and TLR3 and TLR4 (P < 0.05), although TLR3 did not respond in OH. Both TLR adaptors also responded to the exercise bout; these were primarily (Myd88, main effect P ≤ 0.10) or exclusively (TRIF, P < 0.05) driven by the OH group. In summary, aging appears to increase basal expression of some innate immune components in human skeletal muscle, and lifelong aerobic exercise does not affect this age-related increase. An exercise challenge stimulates the expression of several TLRs, while the TLR adaptor response appears to be dysregulated with aging and maintained with lifelong exercise. Partially preserved muscle mass, coupled with a notable immunity profile, suggests lifelong exercisers are likely better prepared for a stress that challenges the immune system.NEW & NOTEWORTHY Findings from this investigation provide novel insight into the effect of aging and lifelong aerobic exercise on structural components of the innate immune system in skeletal muscle of humans. Data presented here suggest aging increases basal expression of select Toll-like receptors (TLRs), and lifelong exercise does not impact this age-related increase. Additionally, acute exercise stimulates gene expression of several TLRs, while the adaptor response is likely dysregulated with aging and maintained with lifelong exercise.


Assuntos
Envelhecimento , Exercício Físico , Humanos , Imunidade Inata , Masculino , Músculo Esquelético , Músculo Quadríceps
10.
J Appl Physiol (1985) ; 128(1): 87-99, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751180

RESUMO

Age-associated chronic basal inflammation compromises muscle mass and adaptability, but exercise training may exert an anti-inflammatory effect. This investigation assessed basal and exercise-induced inflammation in three cohorts of men: young exercisers [YE; n = 10 men; 25 ± 1 yr; maximal oxygen consumption (V̇o2max), 53 ± 3 mL·kg-1·min-1; quadriceps area, 78 ± 3 cm2; means ± SE], old healthy nonexercisers (OH; n = 10; 75 ± 1 yr; V̇o2max, 22 ± 1 mL·kg-1·min-1; quadriceps area, 56 ± 3 cm2), and lifelong exercisers with an aerobic training history of 53 ± 1 yr (LLE; n = 21; 74 ± 1 yr; V̇o2max, 34 ± 1 mL·kg-1·min-1; quadriceps area, 67 ± 2 cm2). Resting serum IL-6, TNF-α, C-reactive protein, and IGF-1 levels were measured. Vastus lateralis muscle biopsies were obtained at rest (basal) and 4 h after an acute exercise challenge (3 × 10 repetitions, 70% 1-repetition maximum) to assess gene expression of cytokines [IL-6, TNF-α, IL-1ß, IL-10, IL-4, interleukin-1 receptor antagonist (IL-1Ra), and transforming growth factor-ß (TGF-ß)], chemokines [IL-8 and monocyte chemoattractant protein-1 (MCP-1)], cyclooxygenase enzymes [cyclooxygenase-1 and -2 (COX-1 and COX-2, respectively), prostaglandin E2 synthases [microsomal prostaglandin E synthase 1 (mPGES-1) and cytosolic prostaglandin E2 synthase (cPGES)] and receptors [prostaglandin E2 receptor EP3 and EP4 subtypes (EP3 and EP4, respectively), and macrophage markers [cluster of differentiation 16b (CD16b) and CD163], as well as basal macrophage abundance (CD68+ cells). Aging led to higher (P ≤ 0.05) circulating IL-6 and skeletal muscle COX-1, mPGES-1, and CD163 expression. However, LLE had significantly lower serum IL-6 levels (P ≤ 0.05 vs. OH) and a predominantly anti-inflammatory muscle profile [higher IL-10 (P ≤ 0.05 vs. YE), TNF-α, TGF-ß, and EP4 levels (P ≤ 0.05 vs. OH)]. In OH only, acute exercise increased expression of proinflammatory factors TNF-α, TGF-ß, and IL-8 (P ≤ 0.05). LLE had postexercise gene expression similar to YE, except lower IL-10 (P ≤ 0.10), mPGES-1, and EP3 expression (P ≤ 0.05). Thus, although aging led to a proinflammatory profile within blood and muscle, lifelong exercise partially prevented this and generally preserved the acute inflammatory response to exercise seen in young exercising men. Lifelong exercise may positively impact muscle health throughout aging by promoting anti-inflammation in skeletal muscle.NEW & NOTEWORTHY This study assessed a unique population of lifelong aerobic exercising men and demonstrated that their activity status exerts an anti-inflammatory effect in skeletal muscle and circulation. Furthermore, we provide evidence that the inflammatory response to acute exercise is dysregulated by aging but preserved with lifelong exercise, which might improve skeletal muscle resilience to unaccustomed loading and adaptability into late life.


Assuntos
Envelhecimento/metabolismo , Citocinas/metabolismo , Exercício Físico , Inflamação/prevenção & controle , Músculo Esquelético/metabolismo , Adulto , Idoso , Envelhecimento/patologia , Estudos de Casos e Controles , Citocinas/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio
11.
Nutrients ; 11(3)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30823632

RESUMO

The purpose of this investigation was to evaluate the effects of experimental hyperglycemia on oxidative damage (OX), advanced glycation end products (AGEs), and the receptor for AGEs (RAGE) through an in vivo approach. Obese subjects (n = 10; 31.2 ± 1.2 kg·m-2; 56 ± 3 years) underwent 24 h of hyperglycemic clamp (+5.4 mM above basal), where plasma at basal and after 2 h and 24 h of hyperglycemic challenge were assayed for OX (methionine sulfoxide, MetSO, and aminoadipic acid, AAA) and AGE-free adducts (Ne-carboxymethyllysine, CML; Ne-carboxyethyllysine, CEL; glyoxal hydroimidazolone-1, GH-1; methylglyoxal hydroimidazolone-1, MG-H1; and 3-deoxyglucosone hydroimidazolone, 3DG-H) via liquid chromatography⁻tandem mass spectrometry (LC⁻MS/MS). Urine was also analyzed at basal and after 24 h for OX and AGE-free adducts and plasma soluble RAGE (sRAGE) isoforms (endogenous secretory RAGE, esRAGE, and cleaved RAGE, cRAGE), and inflammatory markers were determined via enzyme-linked immunosorbent assay (ELISA). Skeletal muscle tissue collected via biopsy was probed at basal, 2 h, and 24 h for RAGE and OST48 protein expression. Plasma MetSO, AAA, CEL, MG-H1, and G-H1 decreased (-18% to -47%; p < 0.05), while CML increased (72% at 24 h; p < 0.05) and 3DG-H remained unchanged (p > 0.05) with the hyperglycemic challenge. Renal clearance of MetSO, AAA, and G-H1 increased (599% to 1077%; p < 0.05), CML decreased (-30%; p < 0.05), and 3DG-H, CEL, and MG-H1 remained unchanged (p > 0.05). Fractional excretion of MetSO, AAA, CEL, G-H1, and MG-H1 increased (5.8% to 532%; p < 0.05) and CML and 3DG-H remained unchanged (p > 0.05). Muscle RAGE and OST48 expression, plasma sRAGE, IL-1ß, IL-1Ra, and TNFα remained unchanged (p > 0.05), while IL-6 increased (159% vs. basal; p > 0.05). These findings suggest that individuals who are obese but otherwise healthy have the capacity to prevent accumulation of OX and AGEs during metabolic stress by increasing fractional excretion and renal clearance.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Hiperglicemia/metabolismo , Obesidade/metabolismo , Estresse Oxidativo/fisiologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Biomarcadores/metabolismo , Cromatografia Líquida , Ensaio de Imunoadsorção Enzimática , Feminino , Técnica Clamp de Glucose , Voluntários Saudáveis , Humanos , Hiperglicemia/etiologia , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Receptor para Produtos Finais de Glicação Avançada/análise , Eliminação Renal/fisiologia , Espectrometria de Massas em Tandem
12.
Nutrients ; 11(2)2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30781793

RESUMO

Advanced glycation end products (AGEs) promote the development of diabetic complications through activation of their receptor (RAGE). Isoforms of soluble RAGE (sRAGE) sequester AGEs and protect against RAGE-mediated diabetic complications. We investigated the effect of an overnight fast on circulating metabolic substrates, hormones, AGEs, and sRAGE isoforms in 26 individuals with type 1 diabetes (T1DM). Blood was collected from 26 young (18⁻30 years) T1DM patients on insulin pumps before and after an overnight fast. Circulating AGEs were measured via LC-MS/MS and sRAGE isoforms were analyzed via ELISA. Glucose, insulin, glucagon, and eGFRcystatin-c decreased while cortisol increased following the overnight fast (p < 0.05). AGEs (CML, CEL, 3DG-H, MG-H1, and G-H1) decreased (21⁻58%, p < 0.0001) while total sRAGE, cleaved RAGE (cRAGE), and endogenous secretory RAGE (esRAGE) increased (22⁻24%, p < 0.0001) following the overnight fast. The changes in sRAGE isoforms were inversely related to MG-H1 (rho = -0.493 to -0.589, p < 0.05) and the change in esRAGE was inversely related to the change in G-H1 (rho = -0.474, p < 0.05). Multiple regression analyses revealed a 1 pg/mL increase in total sRAGE, cRAGE, or esRAGE independently predicted a 0.42⁻0.52 nmol/L decrease in MG-H1. Short-term energy restriction via an overnight fast resulted in increased sRAGE isoforms and may be protective against AGE accumulation.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Jejum , Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Adulto , Biomarcadores , Glicemia , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Análise Multivariada , Estresse Oxidativo , Isoformas de Proteínas , Receptor para Produtos Finais de Glicação Avançada/genética , Adulto Jovem
13.
J Appl Physiol (1985) ; 125(5): 1636-1645, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30161005

RESUMO

The purpose of this study was to examine the effects of aerobic lifelong exercise (LLE) on maximum oxygen consumption (V̇o2max) and skeletal muscle metabolic fitness in trained women ( n = 7, 72 ± 2 yr) and men ( n = 21, 74 ± 1 yr) and compare them to old, healthy nonexercisers (OH; women: n = 10, 75 ± 1 yr; men: n = 10, 75 ± 1 yr) and young exercisers (YE; women: n = 10, 25 ± 1 yr; men: n = 10, 25 ± 1 yr). LLE men were further subdivided based on intensity of lifelong exercise and competitive status into performance (LLE-P, n = 14) and fitness (LLE-F, n = 7). On average, LLE exercised 5 day/wk for 7 h/wk over the past 52 ± 1 yr. Each subject performed a maximal cycle test to assess V̇o2max and had a vastus lateralis muscle biopsy to examine capillarization and metabolic enzymes [citrate synthase, ß-hydroxyacyl-CoA dehydrogenase (ß-HAD), and glycogen phosphorylase]. V̇o2max had a hierarchical pattern (YE > LLE > OH, P < 0.05) for women (44 ± 2 > 26 ± 2 > 18 ± 1 ml·kg-1·min-1) and men (53 ± 3 > 34 ± 1 > 22 ± 1 ml·kg-1·min-1) and was greater ( P < 0.05) in LLE-P (38 ± 1 ml·kg-1·min-1) than LLE-F (27 ± 2 ml·kg-1·min-1). LLE men regardless of intensity and women had similar capillarization and aerobic enzyme activity (citrate synthase and ß-HAD) as YE, which were 20%-90% greater ( P < 0.05) than OH. In summary, these data show a substantial V̇o2max benefit with LLE that tracked similarly between the sexes, with further enhancement in performance-trained men. For skeletal muscle, 50+ years of aerobic exercise fully preserved capillarization and aerobic enzymes, regardless of intensity. These data suggest that skeletal muscle metabolic fitness may be easier to maintain with lifelong aerobic exercise than more central aspects of the cardiovascular system. NEW & NOTEWORTHY Lifelong exercise (LLE) is a relatively new and evolving area of study with information especially limited in women and individuals with varying exercise intensity habits. These data show a substantial maximal oxygen consumption benefit with LLE that tracked similarly between the sexes. Our findings contribute to the very limited skeletal muscle biopsy data from LLE women (>70 yr), and similar to men, revealed a preserved metabolic phenotype comparable to young exercisers.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/enzimologia , Consumo de Oxigênio , Aptidão Física/fisiologia , Idoso , Composição Corporal , Feminino , Humanos , Masculino , Músculo Esquelético/irrigação sanguínea
14.
Med Sci Sports Exerc ; 50(9): 1950-1960, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29570537

RESUMO

PURPOSE: This investigation evaluated myocellular responses to an integrated resistance and aerobic training program during 70 d of bed rest. METHODS: Training was 6 d·wk on a small-footprint gravity-independent flywheel resistance and aerobic device; 3 d of maximal flywheel supine quadriceps and calf exercises with continuous rowing separated by 4 to 6 h, and 3 d of interval rowing. Vastus lateralis (VL) and soleus (SOL) muscle biopsies were obtained from eight healthy males (age, 28 ± 4 yr; BMI, 25 ± 3 kg·m; V˙O2max, 42 ± 6 mL·kg·min) before and after 6° head-down tilt bed rest. Vastus lateralis and SOL myosin heavy chain (MHC) I and IIa single muscle fiber size and functional characteristics, as well as overall fiber type distribution, capillarization, and metabolic enzyme activities were evaluated. RESULTS: In the VL, MHC I size and power (absolute and normalized) were preserved. The MHC IIa fibers hypertrophied (+6%, P < 0.05) without a change in absolute power, so normalized power declined (-7%, P < 0.05). In the SOL, MHC I fibers atrophied (-9%) and absolute power declined (-17%) (P < 0.05), whereas normalized power was maintained. Size, absolute power, and normalized power were protected in the less-abundant MHC IIa fibers. Reduced MHC coexpressing hybrid fibers, generally indicative of an exercise training effect, was apparent in the VL, whereas fiber type was maintained in the SOL. Capillarization and metabolic enzymes were generally preserved or increased in VL and SOL. CONCLUSIONS: The integrated resistance and aerobic training protocol on a device maintains several key myocellular characteristics during prolonged unloading, but further refinement of the exercise approach to fully protect the SOL is warranted.


Assuntos
Repouso em Cama , Terapia por Exercício , Fibras Musculares Esqueléticas , Músculo Esquelético/fisiopatologia , Músculo Quadríceps/fisiopatologia , Treinamento Resistido , Adulto , Biópsia , Decúbito Inclinado com Rebaixamento da Cabeça , Humanos , Masculino , Cadeias Pesadas de Miosina , Adulto Jovem
15.
J Appl Physiol (1985) ; 123(6): 1610-1616, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28706001

RESUMO

Although aspirin is one of the most common anti-inflammatory drugs in the world, the effect of aspirin on human skeletal muscle inflammation is almost completely unknown. This study examined the potential effects and related time course of an orally consumed aspirin dose on the inflammatory prostaglandin E2 (PGE2)/cyclooxygenase (COX) pathway in human skeletal muscle. Skeletal muscle biopsies were taken from the vastus lateralis of 10 healthy adults (5 male and 5 female, 25 ± 2 yr old) before (Pre) and 2, 4, and 24 h after (Post) a standard dose (975mg) of aspirin and partitioned for analysis of 1) in vivo PGE2 levels in resting skeletal muscle and 2) ex vivo skeletal muscle PGE2 production when stimulated with the COX substrate arachidonic acid (5 µM). PGE2 levels in vivo and PGE2 production ex vivo were generally unchanged at each time point after aspirin consumption. However, most individuals clearly showed suppression of PGE2, but at varying time points after aspirin consumption. When the maximum suppression after aspirin consumption was examined for each individual, independent of time, PGE2 levels in vivo (184 ± 17 and 104 ± 23pg/g wet wt at Pre and Post, respectively) and PGE2 production ex vivo (2.74 ± 0.17 and 2.09 ± 0.11pg·mg wet wt-1·min-1 at Pre and Post, respectively) were reduced ( P < 0.05) by 44% and 24%, respectively. These results provide evidence that orally consumed aspirin can inhibit the COX pathway and reduce the inflammatory mediator PGE2 in human skeletal muscle. Findings from this study highlight the need to expand our knowledge regarding the potential role for aspirin regulation of the deleterious influence of inflammation on skeletal muscle health in aging and exercising individuals. NEW & NOTEWORTHY This study demonstrated that orally consumed aspirin can target the prostaglandin/cyclooxygenase pathway in human skeletal muscle. This pathway has been shown to regulate skeletal muscle metabolism and inflammation in aging and exercising individuals. Given the prevalence of aspirin consumption, these findings may have implications for skeletal muscle health in a large segment of the population.


Assuntos
Anti-Inflamatórios/farmacologia , Aspirina/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Dinoprostona/biossíntese , Músculo Esquelético/efeitos dos fármacos , Adulto , Biópsia , Feminino , Humanos , Masculino , Técnicas de Cultura de Tecidos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...