Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Facial Plast Surg ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38657667

RESUMO

In this article, Dr. Stephen Perkins, a seasoned facial plastic surgeon, presents his refined techniques in facelift surgery developed over four decades of practice. His evolution from traditional methods to the current composite tissue deep plane facelift is elucidated. His composite tissue deep plane facelift involves meticulous dissection and repositioning of the superficial musculoaponeurotic system (SMAS) and platysma in the deep plane, as well as incorporating his innovative "Perkins' Kelly clamp anterior platysmaplasty." This technique, refined through years of experience, aims for natural, enduring results, crucially addressing patient concerns such as jowling and neck laxity. Long-term analysis reveals the advantages of Dr. Perkins' technique, particularly in achieving sustained cervicomental angle improvement for over a decade postoperatively. This article underscores the importance of understanding deep plane facelift techniques, distinguishing between different approaches, and tailoring surgical interventions to individual patient characteristics. Dr. Perkins' comprehensive approach, incorporating advancements in surgical technique and meticulous patient care protocols, exemplifies the goal of achieving natural, long-lasting facial rejuvenation.

2.
PLoS One ; 19(4): e0300964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557973

RESUMO

Human immunoglobulin G (IgG) exists as four subclasses IgG1-4, each of which has two Fab subunits joined by two hinges to a Fc subunit. IgG4 has the shortest hinge with 12 residues. The Fc subunit has two glycan chains, but the importance of glycosylation is not fully understood in IgG4. Here, to evaluate the stability and structure of non-glycosylated IgG4, we performed a multidisciplinary structural study of glycosylated and deglycosylated human IgG4 A33 for comparison with our similar study of human IgG1 A33. After deglycosylation, IgG4 was found to be monomeric by analytical ultracentrifugation; its sedimentation coefficient of 6.52 S was reduced by 0.27 S in reflection of its lower mass. X-ray and neutron solution scattering showed that the overall Guinier radius of gyration RG and its cross-sectional values after deglycosylation were almost unchanged. In the P(r) distance distribution curves, the two M1 and M2 peaks that monitor the two most common distances within IgG4 were unchanged following deglycosylation. Further insight from Monte Carlo simulations for glycosylated and deglycosylated IgG4 came from 111,382 and 117,135 possible structures respectively. Their comparison to the X-ray and neutron scattering curves identified several hundred best-fit models for both forms of IgG4. Principal component analyses showed that glycosylated and deglycosylated IgG4 exhibited different conformations from each other. Within the constraint of unchanged RG and M1-M2 values, the glycosylated IgG4 models showed more restricted Fc conformations compared to deglycosylated IgG4, but no other changes. Kratky plots supported this interpretation of greater disorder upon deglycosylation, also observed in IgG1. Overall, these more variable Fc conformations may demonstrate a generalisable impact of deglycosylation on Fc structures, but with no large conformational changes in IgG4 unlike those seen in IgG1.


Assuntos
Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Humanos , Imunoglobulina G/química , Estudos Transversais , Modelos Moleculares , Fragmentos Fc das Imunoglobulinas/química
3.
Facial Plast Surg ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513710
4.
J Biol Chem ; 299(11): 105337, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838175

RESUMO

Heavy chain-only antibodies can offer advantages of higher binding affinities, reduced sizes, and higher stabilities than conventional antibodies. To address the challenge of SARS-CoV-2 coronavirus, a llama-derived single-domain nanobody C5 was developed previously that has high COVID-19 virus neutralization potency. The fusion protein C5-Fc comprises two C5 domains attached to a glycosylated Fc region of a human IgG1 antibody and shows therapeutic efficacy in vivo. Here, we have characterized the solution arrangement of the molecule. Two 1443 Da N-linked glycans seen in the mass spectra of C5-Fc were removed and the glycosylated and deglycosylated structures were evaluated. Reduction of C5-Fc with 2-mercaptoethylamine indicated three interchain Cys-Cys disulfide bridges within the hinge. The X-ray and neutron Guinier RG values, which provide information about structural elongation, were similar at 4.1 to 4.2 nm for glycosylated and deglycosylated C5-Fc. To explain these RG values, atomistic scattering modeling based on Monte Carlo simulations resulted in 72,737 and 56,749 physically realistic trial X-ray and neutron structures, respectively. From these, the top 100 best-fit X-ray and neutron models were identified as representative asymmetric solution structures, similar to that of human IgG1, with good R-factors below 2.00%. Both C5 domains were solvent exposed, consistent with the functional effectiveness of C5-Fc. Greater disorder occurred in the Fc region after deglycosylation. Our results clarify the importance of variable and exposed C5 conformations in the therapeutic function of C5-Fc, while the glycans in the Fc region are key for conformational stability in C5-Fc.


Assuntos
Anticorpos Antivirais , Cadeias Pesadas de Imunoglobulinas , SARS-CoV-2 , Humanos , Imunoglobulina G/química , Cadeias Pesadas de Imunoglobulinas/química , Modelos Moleculares , Polissacarídeos , Anticorpos Antivirais/química , Anticorpos de Domínio Único/química
5.
PLoS One ; 18(9): e0288351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37733670

RESUMO

FcγRI (CD64) is the only high-affinity Fcγ receptor found on monocytes, macrophages, eosinophils, neutrophils and dendritic cells. It binds immunoglobulin G (IgG) antibody-antigen complexes at its Fc region to trigger key immune responses. CD64 contains three immunoglobulin-fold extracellular domains (D1, D2 and D3) and a membrane-spanning region. Despite the importance of CD64, no solution structure for this is known to date. To investigate this, we used analytical ultracentrifugation, small-angle X-ray scattering, and atomistic modelling. Analytical ultracentrifugation revealed that CD64 was monomeric with a sedimentation coefficient s020,w of 2.53 S, together with some dimer. Small-angle X-ray scattering showed that its radius of gyration RG was 3.3-3.4 nm and increased at higher concentrations to indicate low dimerization. Monte Carlo modelling implemented in the SASSIE-web package generated 279,162 physically-realistic trial CD64 structures. From these, the scattering best-fit models at the lowest measured concentrations that minimised dimers revealed that the D1, D2 and D3 domains were structurally similar to those seen in three CD64 crystal structures, but showed previously unreported flexibility between D1, D2 and D3. Despite the limitations of the scattering data, the superimposition of the CD64 solution structures onto crystal structures of the IgG Fc-CD64 complex showed that the CD64 domains do not sterically clash with the IgG Fc region, i.e. the solution structure of CD64 was sufficiently compact to allow IgG to bind to its high-affinity Fcγ receptor. This improved understanding may result in novel approaches to inhibit CD64 function, and opens the way for the solution study of the full-length CD64-IgG complex.


Assuntos
Imunoglobulina G , Receptores de IgG , Domínios de Imunoglobulina , Complexo Antígeno-Anticorpo , Dimerização , Polímeros
6.
J Thromb Haemost ; 21(5): 1164-1176, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36787808

RESUMO

BACKGROUND: Genetic variants in coagulation factor IX (FIX) are associated with hemophilia B, a rare bleeding disease. F9 variants are widespread across the gene and were summarized in our FIX variant database introduced in 2013. OBJECTIVES: We aimed to rationalize the molecular basis for 598 new F9 variants and 1645 new clinical cases, totaling 1692 F9 variants and 5358 related patient cases. METHODS: New F9 variants were identified from publications and online resources, and compiled into a MySQL database for comparison with the human FIXa protein structure. RESULTS: The new total of 1692 F9 variants correspond to 406 (88%) of the 461 FIX residues and now include 70 additional residues. They comprise 945 unique point variants, 281 deletions, 352 polymorphisms, 63 insertions, and 51 others. Most FIX variants were point variants, although their proportion (56%) has reduced compared to 2013 (73%); at the same time, the proportion of polymorphisms has increased from 5% to 21%. The 764 unique mild severity variants in the mature protein with known phenotypes include 74 (9.7%) quantitative type I variants and 116 (15.2%) predominantly qualitative type II variants. The remaining 574 variants types are unspecified. Inhibitors are associated with 152 hemophilia B cases out of 5358 patients (2.8%), an increase of 93 from the previous database. CONCLUSION: The even distribution of the F9 variants revealed few mutational hotspots, and most variants were associated with small perturbations in the FIX protein structure. The updated database will assist clinicians and researchers in assessing treatments for patients with hemophilia B.


Assuntos
Fator IX , Hemofilia B , Humanos , Fator IX/genética , Fator IX/química , Hemofilia B/diagnóstico , Hemofilia B/genética , Mutação , Polimorfismo Genético , Fenótipo
7.
TH Open ; 7(1): e30-e41, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36751301

RESUMO

The inherited bleeding disorder Factor V (FV) deficiency and clotting risk factor FV Leiden are associated with genetic variants in the F5 gene. FV deficiency occurs with mild, moderate, severe, or asymptomatic phenotypes, and either dysfunctional or reduced amounts of plasma FV protein. Here we present an interactive web database containing 363 unique F5 variants derived from 801 patient records, with 199 FV deficiency-associated variants from 245 patient records. Their occurrence is rationalized based on the 2,224 residue sequence and new FV protein structures. The 199 FV deficiency variants correspond to 26 (13%) mild, 22 (11%) moderate, 49 (25%) severe, 35 (18%) asymptomatic, and 67 (34%) unreported phenotypes. Their variant distributions in the FV domains A1, A2, A3, B, C1 and C2 were 28 (14%), 32 (16%), 34 (17%), 42 (21%), 16 (8%), and 19 variants (10%), respectively, showing that these six regions contain similar proportions of variants. Variants associated with FV deficiency do not cluster near known protein-partner binding sites, thus the molecular mechanism leading to the phenotypes cannot be explained. However, the widespread distribution of FV variants in combination with a high proportion of buried variant residues indicated that FV is susceptible to disruption by small perturbations in its globular structure. Variants located in the disordered B domain also appear to disrupt the FV structure. We discuss how the interactive database provides an online resource that clarifies the clinical understanding of FV deficiency.

8.
J Biol Chem ; 299(2): 102799, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528062

RESUMO

Collagen triple helices are critical in the function of mannan-binding lectin (MBL), an oligomeric recognition molecule in complement activation. The MBL collagen regions form complexes with the serine proteases MASP-1 and MASP-2 in order to activate complement, and mutations lead to common immunodeficiencies. To evaluate their structure-function properties, we studied the solution structures of four MBL-like collagen peptides. The thermal stability of the MBL collagen region was much reduced by the presence of a GQG interruption in the typical (X-Y-Gly)n repeat compared to controls. Experimental solution structural data were collected using analytical ultracentrifugation and small angle X-ray and neutron scattering. As controls, we included two standard Pro-Hyp-Gly collagen peptides (POG)10-13, as well as three more peptides with diverse (X-Y-Gly)n sequences that represented other collagen features. These data were quantitatively compared with atomistic linear collagen models derived from crystal structures and 12,000 conformations obtained from molecular dynamics simulations. All four MBL peptides were bent to varying degrees up to 85o in the best-fit molecular dynamics models. The best-fit benchmark peptides (POG)n were more linear but exhibited a degree of conformational flexibility. The remaining three peptides showed mostly linear solution structures. In conclusion, the collagen helix is not strictly linear, the degree of flexibility in the triple helix depends on its sequence, and the triple helix with the GQG interruption showed a pronounced bend. The bend in MBL GQG peptides resembles the bend in the collagen of complement C1q and may be key for lectin pathway activation.


Assuntos
Colágeno , Ativação do Complemento , Lectina de Ligação a Manose , Colágeno/química , Lectina de Ligação a Manose/química , Lectina de Ligação a Manose/metabolismo , Soluções/química , Conformação Proteica , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Relação Estrutura-Atividade , Estabilidade Proteica , Espalhamento a Baixo Ângulo , Difração de Nêutrons , Ultracentrifugação , Simulação de Dinâmica Molecular , Cristalografia por Raios X , Maleabilidade
9.
J Struct Biol ; 214(3): 107876, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35738335

RESUMO

Botulinum Neurotoxins (BoNT) are the most potent toxins currently known. However, they also have therapeutic applications for an increasing number of motor related conditions due to their specificity, and low diffusion into the system. Although the start- and end- points for the BoNT mechanism of action are well-studied, a critical step remains poorly understood. It is theorised that BoNTs undergo a pH-triggered conformational shift, activating the neurotoxin by priming it to form a transmembrane (TM) channel. To test this hypothesis, we combined molecular dynamics (MD) simulations and small-angle x-ray scattering (SAXS), revealing a new conformation of serotype E (BoNT/E). This conformation was exclusively observed in simulations below pH 5.5, as determined by principal component analysis (PCA), and its theoretical SAXS profile matched an experimental SAXS profile obtained at pH 4. Additionally, a localised secondary structural change was observed in MD simulations below pH 5.5, in a region previously identified as instrumental for membrane insertion for serotype A (BoNT/A). These changes were found at a critical pH value for BoNTs in vivo, and may be relevant for their therapeutic use.


Assuntos
Toxinas Botulínicas Tipo A , Toxinas Botulínicas , Toxinas Botulínicas Tipo A/química , Concentração de Íons de Hidrogênio , Espalhamento a Baixo Ângulo , Difração de Raios X
11.
Facial Plast Surg ; 38(6): 575-583, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35545119

RESUMO

Over the past four decades, the senior author has evolved and perfected his preferred method for face and neck lifting, the extended superficial musculoaponeurotic system deep plane rhytidectomy, and submentoplasty. With this procedure, the superficial musculoaponeurotic system layer is addressed both in the face and neck, repositioning the tissues in a superior and posterior vector and creating a sling in the cervicomental area. Outcomes have proven to be both successful and long lasting. In this article, a detailed update and discussion of the specific techniques utilized are provided.


Assuntos
Ritidoplastia , Sistema Musculoaponeurótico Superficial , Humanos , Sistema Musculoaponeurótico Superficial/cirurgia , Ritidoplastia/métodos , Pescoço/cirurgia
12.
FEBS J ; 289(7): 1876-1896, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34817923

RESUMO

ZAG is a multifunctional glycoprotein with a class I MHC-like protein fold and an α1-α2 lipid-binding groove. The intrinsic ZAG ligand is unknown. Our previous studies showed that ZAG binds the dansylated C11 fatty acid, DAUDA, differently to the boron dipyrromethane C16 fatty acid, C16 -BODIPY. Here, the molecular basis for this difference was elucidated. Multi-wavelength analytical ultracentrifugation confirmed that DAUDA and C16 -BODIPY individually bind to ZAG and compete for the same binding site. Molecular docking of lipid-binding in the structurally related Cluster of differentiation 1 proteins predicted nine conserved ligand contact residues in ZAG. Twelve mutants were accordingly created by alanine scanning site directed mutagenesis for characterisation. Mutation of Y12 caused ZAG to misfold. Mutation of K147, R157 and A158 abrogated C16 -BODIPY but not DAUDA binding. L69 and T169 increased the fluorescence emission intensity of C16 -BODIPY but not of DAUDA compared to wild-type ZAG and showed that C16 -BODIPY binds close to T169 and L69. Distance measurements of the crystal structure revealed K147 forms a salt bridge with D83. A range of bioactive bulky lipids including phospholipids and sphingolipids displaced DAUDA from the ZAG binding site but unexpectedly did not displace C16 -BODIPY. We conclude that the ZAG α1-α2 groove contains separate but overlapping sites for DAUDA and C16 -BODIPY and is involved in binding to a bulkier and wider repertoire of lipids than previously reported. This work suggested that the in vivo activity of ZAG may be dictated by its lipid ligand.


Assuntos
Zinco , Glicoproteína Zn-alfa-2 , Ácidos Graxos/metabolismo , Glicoproteínas/metabolismo , Simulação de Acoplamento Molecular , Zinco/metabolismo
13.
Facial Plast Surg Aesthet Med ; 24(2): 95-101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34613848

RESUMO

Objective: This study sought to retrospectively analyze the longevity of the subnasal lip lift procedure on the aging upper lip by determining if the amount of skin resected was maintained. Methods: Patients who underwent subnasal upper lip lift procedure of 5-mm resection with the senior author (S.W.P.) from 2006 to 2020 were identified for a total of 52 patients who met inclusion criteria. Pre- and postoperative measurements of nasal base to upper lip vermillion border and vermillion height were taken. Longevity of results were measured through percentage retention of 5-mm lift and percentage improvements of lip show. Results: The percentage retention of the 5-mm lift and percentage improvement of lip measurements were maintained over time with a slow decline. The average percentage improvement of lip show was 48.2%. Patients <5 years out from surgery had 50.1% improvement compared with 40.3% for those ≥5 years out (p = 0.569). Conclusions: The subnasal lip lift procedure shortens the vertical height of the elongated upper lip and gives increased vermillion show with predictable results.


Assuntos
Lábio , Nariz , Envelhecimento , Humanos , Lábio/cirurgia , Nariz/cirurgia , Rejuvenescimento , Estudos Retrospectivos
14.
Surg J (N Y) ; 7(4): e322-e326, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34926815

RESUMO

Importance Preoperative imaging provides an advantageous balance by helping patients to effectively communicate their aesthetic desires while allowing surgeons to establish realistic expectations of surgical outcomes. Objective To determine the role of preoperative imaging and the importance of online-based photo galleries in influencing a patient's decision to pursue cosmetic facial plastic surgery. Design, Setting, and Participants A retrospective study was conducted on 100 patients who underwent preoperative imaging prior to undergoing aesthetic facial plastic surgery from July 2019 to May 2020. An in-office physician-led clinical consultation followed by a preoperative imaging session was performed on each patient prior to surgical intervention. A 6-question survey was provided once to all patients between their 3- and 12-month postoperative time periods. Main Outcomes and Measures The importance of preoperative imaging and the influence of physician website and social media photo galleries regarding surgical decision-making was evaluated. Results A total of 100 participants (female [90; 90%]) and mean age 52.6 (range, 18-77) years were included. Nearly 60% of patients underwent facial rejuvenation procedures. All reported that preoperative in-office physician consultation in combination with the use of preoperative imaging were helpful in facilitating a commitment to surgical intervention. Sixty-nine (69%) patients endorsed the use of both the frontal and lateral imaging views, while 30 (30%) deemed a single angle to be superior. Seventy (70%) participants utilized online-based "before & after" photo galleries in the form of physician websites and/or social media platforms to assist in their decision to undergo surgical intervention. Conclusions and Relevance The combination of in-office physician consultation, preoperative imaging, and availability of website and/or social media photo galleries plays a key role in a patient's decision to pursue cosmetic surgery. Thus, implementation of all facets should become an integral part of any facial plastic surgeon's aesthetic practice.

15.
Front Med (Lausanne) ; 8: 775280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912830

RESUMO

Genetic testing has uncovered rare variants in complement proteins associated with thrombotic microangiopathy (TMA) and C3 glomerulopathy (C3G). Approximately 50% are classified as variants of uncertain significance (VUS). Clinical risk assessment of patients carrying a VUS remains challenging primarily due to a lack of functional information, especially in the context of multiple confounding factors in the setting of kidney transplantation. Our objective was to evaluate the clinicopathologic significance of genetic variants in TMA and C3G in a kidney transplant cohort. We used whole exome next-generation sequencing to analyze complement genes in 76 patients, comprising 60 patients with a TMA and 16 with C3G. Ten variants in complement factor H (CFH) were identified; of these, four were known to be pathogenic, one was likely benign and five were classified as a VUS (I372V, I453L, G918E, T956M, L1207I). Each VUS was subjected to a structural analysis and was recombinantly produced; if expressed, its function was then characterized relative to the wild-type (WT) protein. Our data indicate that I372V, I453L, and G918E were deleterious while T956M and L1207I demonstrated normal functional activity. Four common polymorphisms in CFH (E936D, N1050Y, I1059T, Q1143E) were also characterized. We also assessed a family with a pathogenic variant in membrane cofactor protein (MCP) in addition to CFH with a unique clinical presentation featuring valvular dysfunction. Our analyses helped to determine disease etiology and defined the recurrence risk after kidney transplant, thereby facilitating clinical decision making for our patients. This work further illustrates the limitations of the prediction models and highlights the importance of conducting functional analysis of genetic variants particularly in a complex clinicopathologic scenario such as kidney transplantation.

16.
J Biol Chem ; 297(3): 100995, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34302810

RESUMO

Human immunoglobulin G subclass 3 (IgG3) possesses a uniquely long hinge region that separates its Fab antigen-binding and Fc receptor-binding regions. Owing to this hinge length, the molecular structure of full-length IgG3 remains elusive, and the role of the two conserved Fc glycosylation sites are unknown. To address these issues, we subjected glycosylated and deglycosylated human myeloma IgG3 to multidisciplinary solution structure studies. Using analytical ultracentrifugation, the elongated structure of IgG3 was determined from the reduced sedimentation coefficients s020,w of 5.82 to 6.29 S for both glycosylated and deglycosylated IgG3. X-ray and neutron scattering showed that the Guinier RG values were 6.95 nm for glycosylated IgG3 and were unchanged after deglycosylation, again indicating an elongated structure. The distance distribution function P(r) showed a maximum length of 25 to 28 nm and three distinct maxima. The molecular structure of IgG3 was determined using atomistic modeling based on molecular dynamics simulations of the IgG3 hinge and Monte Carlo simulations to identify physically realistic arrangements of the Fab and Fc regions. This resulted in libraries containing 135,135 and 73,905 glycosylated and deglycosylated IgG3 structures, respectively. Comparisons with the X-ray and neutron scattering curves gave 100 best-fit models for each form of IgG3 that accounted for the experimental scattering curves. These models revealed the first molecular structures for full-length IgG3. The structures exhibited relatively restricted Fab and Fc conformations joined by an extended semirigid hinge, which explains the potent effector functions of IgG3 relative to the other subclasses IgG1, IgG2, and IgG4.


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Imunoglobulina G/química , Mieloma Múltiplo/imunologia , Proteínas do Mieloma/química , Receptores Fc/química , Sequência de Aminoácidos , Cromatografia Líquida/métodos , Glicosilação , Humanos , Espectrometria de Massas/métodos , Simulação de Dinâmica Molecular , Nêutrons , Conformação Proteica , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Ultracentrifugação/métodos , Difração de Raios X
17.
Biophys J ; 120(9): 1814-1834, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33675758

RESUMO

The human immunoglobulin G (IgG) class is the most prevalent antibody in serum, with the IgG1 subclass being the most abundant. IgG1 is composed of two Fab regions connected to a Fc region through a 15-residue hinge peptide. Two glycan chains are conserved in the Fc region in IgG; however, their importance for the structure of intact IgG1 has remained unclear. Here, we subjected glycosylated and deglycosylated monoclonal human IgG1 (designated as A33) to a comparative multidisciplinary structural study of both forms. After deglycosylation using peptide:N-glycosidase F, analytical ultracentrifugation showed that IgG1 remained monomeric and the sedimentation coefficients s020,w of IgG1 decreased from 6.45 S by 0.16-0.27 S. This change was attributed to the reduction in mass after glycan removal. X-ray and neutron scattering revealed changes in the Guinier structural parameters after deglycosylation. Although the radius of gyration (RG) was unchanged, the cross-sectional radius of gyration (RXS-1) increased by 0.1 nm, and the commonly occurring distance peak M2 of the distance distribution curve P(r) increased by 0.4 nm. These changes revealed that the Fab-Fc separation in IgG1 was perturbed after deglycosylation. To explain these changes, atomistic scattering modeling based on Monte Carlo simulations resulted in 123,284 and 119,191 trial structures for glycosylated and deglycosylated IgG1 respectively. From these, 100 x-ray and neutron best-fit models were determined. For these, principal component analyses identified five groups of structural conformations that were different for glycosylated and deglycosylated IgG1. The Fc region in glycosylated IgG1 showed a restricted range of conformations relative to the Fab regions, whereas the Fc region in deglycosylated IgG1 showed a broader conformational spectrum. These more variable Fc conformations account for the loss of binding to the Fcγ receptor in deglycosylated IgG1.


Assuntos
Imunoglobulina G , Receptores de IgG , Estudos Transversais , Humanos , Modelos Moleculares , Polissacarídeos , Conformação Proteica
18.
TH Open ; 5(4): e543-e556, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35059554

RESUMO

Coagulation Factor XI (FXI) is a plasma glycoprotein composed of four apple (Ap) domains and a serine protease (SP) domain. FXI circulates as a dimer and activates Factor IX (FIX), promoting thrombin production and preventing excess blood loss. Genetic variants that degrade FXI structure and function often lead to bleeding diatheses, commonly termed FXI deficiency. The first interactive FXI variant database underwent initial development in 2003 at https://www.factorxi.org . Here, based on a much improved FXI crystal structure, the upgraded FXI database contains information regarding 272 FXI variants (including 154 missense variants) found in 657 patients, this being a significant increase from the 183 variants identified in the 2009 update. Type I variants involve the simultaneous reduction of FXI coagulant activity (FXI:C) and FXI antigen levels (FXI:Ag), whereas Type II variants result in decreased FXI:C yet normal FXI:Ag. The database updates now highlight the predominance of Type I variants in FXI. Analysis in terms of a consensus Ap domain revealed the near-uniform distribution of 81 missense variants across the Ap domains. A further 66 missense variants were identified in the SP domain, showing that all regions of the FXI protein were important for function. The variants clarified the critical importance of changes in surface solvent accessibility, as well as those of cysteine residues and the dimer interface. Guidelines are provided below for clinicians who wish to use the database for diagnostic purposes. In conclusion, the updated database provides an easy-to-use web resource on FXI deficiency for clinicians.

19.
TH Open ; 5(4): e557-e569, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35059555

RESUMO

Coagulation factor X (FX), often termed as Stuart-Prower factor, is a plasma glycoprotein composed of the γ-carboxyglutamic acid (GLA) domain, two epidermal growth factor domains (EGF-1 and EGF-2), and the serine protease (SP) domain. FX plays a pivotal role in the coagulation cascade, activating thrombin to promote platelet plug formation and prevent excess blood loss. Genetic variants in FX disrupt coagulation and lead to FX or Stuart-Prower factor deficiency. To better understand the relationship between FX deficiency and disease severity, an interactive FX variant database has been set up at https://www.factorx-db.org , based on earlier web sites for the factor-XI and -IX coagulation proteins. To date (April 2021), we report 427 case reports on FX deficiency corresponding to 180 distinct F10 genetic variants. Of these, 149 are point variants (of which 128 are missense), 22 are deletions, 3 are insertions, and 6 are polymorphisms. FX variants are phenotypically classified as being type I or II. Type-I variants involve the simultaneous reduction of FX coagulant activity (FX:C) and FX antigen levels (FX:Ag), whereas type-II variants involve a reduction in FX:C with normal FX:Ag plasma levels. Both types of variants were distributed throughout the FXa protein structure. Analyses based on residue surface accessibilities showed the most damaging variants to occur at residues with low accessibilities. The interactive FX web database provides a novel easy-to-use resource for clinicians and scientists to improve the understanding of FX deficiency. Guidelines are provided for clinicians who wish to use the database for diagnostic purposes.

20.
J Biol Chem ; 295(48): 16342-16358, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32928961

RESUMO

The human complement Factor H-related 5 protein (FHR5) antagonizes the main circulating complement regulator Factor H, resulting in the deregulation of complement activation. FHR5 normally contains nine short complement regulator (SCR) domains, but a FHR5 mutant has been identified with a duplicated N-terminal SCR-1/2 domain pair that causes CFHR5 nephropathy. To understand how this duplication causes disease, we characterized the solution structure of native FHR5 by analytical ultracentrifugation and small-angle X-ray scattering. Sedimentation velocity and X-ray scattering indicated that FHR5 was dimeric, with a radius of gyration (Rg ) of 5.5 ± 0.2 nm and a maximum protein length of 20 nm for its 18 domains. This result indicated that FHR5 was even more compact than the main regulator Factor H, which showed an overall length of 26-29 nm for its 20 SCR domains. Atomistic modeling for FHR5 generated a library of 250,000 physically realistic trial arrangements of SCR domains for scattering curve fits. Only compact domain structures in this library fit well to the scattering data, and these structures readily accommodated the extra SCR-1/2 domain pair present in CFHR5 nephropathy. This model indicated that mutant FHR5 can form oligomers that possess additional binding sites for C3b in FHR5. We conclude that the deregulation of complement regulation by the FHR5 mutant can be rationalized by the enhanced binding of FHR5 oligomers to C3b deposited on host cell surfaces. Our FHR5 structures thus explained key features of the mechanism and pathology of CFHR5 nephropathy.


Assuntos
Proteínas do Sistema Complemento/química , Nefropatias , Mutação , Multimerização Proteica , Complemento C3b/química , Complemento C3b/genética , Complemento C3b/metabolismo , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Células HEK293 , Humanos , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...