Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 302(Pt B): 114061, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34800769

RESUMO

Scots pine bog edge woodland is a type of habitat typical on raised bogs where trees cohabitate with bog vegetation to form a low-density stand. Even though nowadays this habitat does not cover large areas, in a future scenario it is possible that this environment will expand, either naturally (drier climate) or anthropogenically, as the result of the application of new restoration strategies that could increase net landscape carbon benefits from both peatland and woodland environments. This study is the first reported investigation in Scotland exploring carbon flux dynamics from sparse woodlands on raised bogs. We examined how Scots pine trees directly or indirectly affected soil temperature and moisture, ground vegetation, and consequently carbon dioxide (CO2) and methane (CH4) soil fluxes. Soil CO2 and CH4 were measured at different distance from the tree and thereafter assessed for both spatial and temporal variability. Our results showed that these low-density trees were able to modify the ground vegetation composition, had no effect on soil temperature, but did affect the soil moisture, with soils close to tree roots significantly drier (0.25 ± 0.01 m3 m-3) than those on open bog (0.39 ± 0.02 m3 m-3). Soil CO2 fluxes were significantly higher in the vicinity of trees (34.13 ± 3.97 µg CO2 m-2 s-1) compared to the open bog (24.34 ± 2.86 µg CO2 m-2 s-1). On the opposite, CH4 effluxes were significantly larger in the open bog (0.07 ± 0.01 µg CH4 m-2 s-1) than close to the tree (0.01 ± 0.00 µg CH4 m-2 s-1). This suggests that Scots pine trees on bog edge woodland may affect soil C fluxes in their proximity primarily due to the contribution of root respiration, but also as a result of their effects on soil moisture, enhancing soil CO2 emissions, while reducing the CH4 fluxes. There is, however, still uncertainty about the complete greenhouse gas assessment, and further research would be needed in order to include the quantification of soil nitrous oxide (N2O) dynamics together with the analysis of complete gas exchanges at the tree-atmosphere level.


Assuntos
Dióxido de Carbono , Metano , Dióxido de Carbono/análise , Florestas , Óxido Nitroso/análise , Solo , Áreas Alagadas
2.
Tree Physiol ; 34(10): 1130-40, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25335951

RESUMO

Stem injection techniques can be used to introduce (15)N into trees to overcome a low variation in natural abundance and label biomass with a distinct (15)N signature, but have tended to target small and young trees, of a variety of species, with little replication. We injected 98 atom% (15)N ammonium nitrate (NH4NO3) solution into 13 mature, 9- to 13-m tall edge-profile Sitka spruce trees in order to produce a large quantity of labelled litter, examining the distribution of the isotope throughout the canopy after felling in terms of both total abundance of (15)N and relative distribution of the isotope throughout individual trees. Using a simple mass balance of the canopy alone, based on observed total needle biomass and modelled branch biomass, all of the isotope injected was accounted for, evenly split between needles and branches, but with a high degree of variability both within individual trees, and among trees. Both (15)N abundance and relative within-canopy distribution were biased towards the upper and middle crown in foliage. Recovery of the label in branches was much more variable than in needles, possibly due to differences in nitrogen allocation for both growth and storage, which differ seasonally between foliage and woody biomass.


Assuntos
Nitrogênio/análise , Picea/química , Injeções , Nitratos/administração & dosagem , Nitrogênio/metabolismo , Isótopos de Nitrogênio , Picea/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Caules de Planta , Distribuição Tecidual
3.
Tree Physiol ; 26(10): 1297-313, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16815832

RESUMO

Scots pine (Pinus sylvestris L.) seedlings were grown under different conditions (three field locations, two seasons and two climate room regimes), and then analyzed for freezing tolerance of shoots and roots and for transcript abundance in apical buds based on a cDNA microarray containing about 1500 expressed sequence tags (ESTs) from buds of cold-treated Scots pine seedlings. In a climate room providing long daily photoperiods and high temperatures, seedlings did not develop freezing tolerance, whereas seedlings in a climate room set to provide declining temperatures and day lengths developed moderate freezing tolerance. Control seedlings grown outside under field conditions developed full freezing tolerance. Differences in physiological behavior of the different seedling groups, combined with molecular analysis, allowed identification of a large group of genes, expression of which changed during the development of freezing tolerance. Transcript abundance of several of these genes was highly correlated with freezing tolerance in seedlings differing in provenance, field location or age, making them excellent candidate marker genes for molecular tests for freezing tolerance.


Assuntos
Aclimatação/genética , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Pinus sylvestris/genética , Proteínas de Plantas/genética , Árvores/genética , Clima , Temperatura Baixa , Europa (Continente) , Etiquetas de Sequências Expressas , Marcadores Genéticos/genética , Pinus sylvestris/metabolismo , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Estações do Ano , Plântula/genética , Árvores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...