Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Process Impacts ; 21(10): 1699-1712, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31549133

RESUMO

To simulate global mercury (Hg) dynamics in chemical transport models (CTMs), surface-atmosphere exchange of gaseous elemental mercury, Hg0, is often parameterized based on resistance-based dry deposition schemes coupled with a re-emission function, mainly from soils. Despite extensive use of this approach, direct evaluations of this implementation against field observations of net Hg0 exchange are lacking. In this study, we evaluate an existing net exchange parameterization (referred to here as the base model) by comparing modeled fluxes of Hg0 to fluxes measured in the field using micrometeorological techniques. Comparisons were performed in two terrestrial ecosystems: a grassland site in Switzerland and an Arctic tundra site in Alaska, U.S., each including summer and winter seasons. The base model included the dry deposition and soil re-emission parameterizations from Zhang et al. (2003) and the global CTM GEOS-Chem, respectively. Comparisons of modeled and measured Hg0 fluxes showed large discrepancies, particularly in the summer months when the base model overestimated daytime net deposition by approximately 9 and 2 ng m-2 h-1 at the grassland and tundra sites, respectively. In addition, the base model was unable to capture a measured nighttime net Hg0 deposition and wintertime deposition. We conducted a series of sensitivity analyses and recommend that Hg simulations using CTMs: (i) reduce stomatal uptake of Hg0 over grassland and tundra in models by a factor 5-7; (ii) increase nighttime net Hg0 deposition, e.g., by increasing ground and cuticular uptake by reducing the respective resistance terms by factors of 3-4 and 2-4, respectively; and (iii) implement a new soil re-emission parameterization to produce larger daytime emissions and lower nighttime emissions. We also compared leaf Hg0 uptake over the growing season estimated by the dry deposition model against foliar Hg measurements, which revealed good agreement with the measured leaf Hg concentrations after adjusting the base model as suggested above. We conclude that the use of resistance-based models combined with the new soil re-emission flux parameterization is able to reproduce observed diel and seasonal patterns of Hg0 exchange in these ecosystems. This approach can be used to improve model parameterizations for other ecosystems if flux measurements become available.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Mercúrio/análise , Solo/química , Poluentes Atmosféricos/química , Alaska , Ecossistema , Monitoramento Ambiental/métodos , Pradaria , Mercúrio/química , Estações do Ano , Suíça , Tundra
2.
Environ Sci Process Impacts ; 21(6): 1065-1066, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31184660

RESUMO

Correction for 'Responses of deposition and bioaccumulation in the Great Lakes region to policy and other large-scale drivers of mercury emissions' by J. A. Perlinger et al., Environ. Sci.: Processes Impacts, 2018, 20, 195-209.

3.
Environ Sci Process Impacts ; 20(1): 195-209, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29360116

RESUMO

Mercury (Hg) emissions pose a global problem that requires global cooperation for a solution. However, neither emissions nor regulations are uniform world-wide, and hence the impacts of regulations are also likely to vary regionally. We report here an approach to model the effectiveness of regulations at different scales (local, regional, global) in reducing Hg deposition and fish Hg concentrations in the Laurentian Great Lakes (GL) region. The potential effects of global change on deposition are also modeled. We focus on one of the most vulnerable communities within the region, an Indigenous tribe in Michigan's Upper Peninsula (UP) with a high fish consumption rate. For the GL region, elements of global change (climate, biomass burning, land use) are projected to have modest impacts (<5% change from the year 2000) on Hg deposition. For this region, our estimate of the effects of elimination of anthropogenic emissions is a 70% decrease in deposition, while our minimal regulation scenario increases emissions by 35%. Existing policies have the potential to reduce deposition by 20% with most of the reduction attributable to U.S. policies. Local policies within the Great Lakes region show little effect, and global policy as embedded in the Minamata Convention is projected to decrease deposition by approximately 2.8%. Even within the GL region, effects of policy are not uniform; areas close to emission sources (Illinois, Indiana, Ohio, Pennsylvania) experience larger decreases in deposition than other areas including Michigan's UP. The UP landscape is highly sensitive to Hg deposition, with nearly 80% of lakes estimated to be impaired. Sensitivity to mercury is caused primarily by the region's abundant wetlands. None of the modeled policy scenarios are projected to reduce fish Hg concentrations to the target that would be safe for the local tribe. Regions like Michigan's UP that are highly sensitive to mercury deposition and that will see little reduction in deposition due to regulations require more aggressive policies to reduce emissions to achieve recovery. We highlight scientific uncertainties that continue to limit our ability to accurately predict fish Hg changes over time.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Política Ambiental , Lagos/química , Mercúrio/análise , Poluentes Químicos da Água/análise , Animais , Monitoramento Ambiental/legislação & jurisprudência , Política Ambiental/legislação & jurisprudência , Peixes/metabolismo , Great Lakes Region
4.
Environ Sci Technol ; 36(12): 2663-9, 2002 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12099462

RESUMO

Evidence of the addition of hydrogen sulfide to 5-hydroxy-1,4-naphthoquinone (juglone) in aqueous solution was obtained by nuclear magnetic resonance spectrometry (NMR), electron paramagnetic resonance spectrometry (EPR), UV-visible absorbance spectroscopy, and kinetic measurements. Although numerous addition reactions of thiolated alkane and aromatic compounds to quinones have been previously reported, this study indicates that inorganic forms of S(-II) act as nucleophiles and electrophiles in addition reactions to the alpha,beta-conjugated system of the quinone. The results obtained are consistent with competing Michael and radical addition reactions, with radical addition favored with increasing pH. The simplest structure that simulated the NMR spectrum was a sulfur molecule containing sulfur bonded between two juglone molecules at C-2 or C-3, while EPR measurements of aqueous reaction solutions indicated the presence of a stable semiquinone that contained a sulfur substituent at C-2 or C-3. Quinones are present in trace amounts in natural organic matter, and the addition of S(-II) has important implications with respect to transport and transformation of a variety of compounds that react with natural organic matter.


Assuntos
Poluentes Atmosféricos , Citotoxinas/química , Sulfeto de Hidrogênio/química , Naftoquinonas/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Compostos Orgânicos , Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...