Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 4(1): 2398-2409, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459478

RESUMO

Here, we report that the trimetallic nanosized oxide NiFeMnO4 consists of a mixture of NiO and a strained cubic spinel phase, which is clearly demonstrated by analysis of the pair distribution function (PDF) and synchrotron X-ray data. Such a finding can easily be overlooked by using only inhouse X-ray powder diffraction, leading to inaccurate assumption of the stoichiometry and oxidation states. Such advanced characterization is essential because a homogeneous distribution of the elements is observed in energy-dispersive X-ray spectroscopy maps, giving no hints for a phase separation. Cycling of the sample against Li delivers a high reversible capacity of ≈840 mAh/g in the 50th cycle. Operando X-ray absorption spectroscopy (XAS) experiments indicate that ≈0.8 Li/fu is consumed without detectable changes of the electronic structure. Increasing amounts of Li, Mn3+, and Fe3+ are simultaneously reduced. The disappearance of the pre-edge features in X-ray absorption near-edge spectroscopy indicates movement of these cations from tetrahedral sites to octahedral sites. PDF analysis of the pattern after an uptake of 2 Li/fu evidences that the principal structure can be sufficiently well modeled assuming coexisting NiO, a mixed monoxide, and a small amount of residual spinel phase. Thus, the majority of cations is located on octahedral sites. Furthermore, an improvement of the PDF model is achieved taking into account small amounts of LiOH. The 7Li MAS NMR spectrum of this sample clearly shows the signal of Li in a diamagnetic environment, excluding Li-O-TM bonds. A further increase of the Li content leads to a successive conversion of the cations to nanosized metal particles embedded in a LiOH/Li2O matrix. Ex situ XAS results indicate that Fe can be reversibly reoxidized to Fe3+ during charge whereas Mn does not reach the oxidation state observed in the pristine material. After excessive cycling, reoxidation of metallic Ni is suppressed and contributes to a capacity loss compared with the early discharge/charge cycles.

2.
Phys Chem Chem Phys ; 20(28): 19129-19141, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29974092

RESUMO

We report on results of a comprehensive investigation on reaction mechanisms occurring during Li uptake and release of the composite NiFe2O4/CNT. Operando X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) data collected simultaneously using one in situ cell allowed thorough elucidation of structural and electronic alterations happening during Li uptake. From the beginning of Li uptake, the Bragg intensity of the spinel reflections decreases which can be explained by reduction of Fe3+ ions and simultaneous movement of the Fe2+ cations from tetrahedral 8a to empty octahedral 16c sites. The reduction of Fe3+ is clearly evidenced by XAS. The occupation of tetrahedral sites by Li+ can be excluded based on results of density functional theory calculations. Increasing the Li content leads to formation of a new crystalline phase resembling a monoxide with a NaCl-like structure. The appearance of the new phase is accompanied by a steady decrease of the sizes of coherently scattering domains of the spinel and a growth of the domains of the monoxide phase. After uptake of about 2.5 Li per NiFe2O4, all Fe3+ cations are reduced to Fe2+ and the tetrahedral 8a sites are empty (XAS spectra). Careful Rietveld refinements of X-ray powder patterns demonstrate that the tetrahedral 8a site is successively depleted with increasing Li content. Interestingly, the occupancy of the octahedral 16d site is also slightly reduced. Increasing the Li content beyond 2.5 Li/NiFe2O4 leads to successive reduction of the cations to very small metal particles embedded in a Li2O matrix (as evidenced by 7Li MAS NMR investigations). During Li release metallic Ni and Fe are reoxidized to Ni2+ resp. Fe3+. The cycling stability of NiFe2O4/CNT is significantly improved compared to pure NiFe2O4 or a mechanical mixture of NiFe2O4 and CNTs.

4.
Chemistry ; 22(47): 16929-16938, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27723136

RESUMO

A composite consisting of CoFe2 O4 spinel nanoparticles and reduced graphite oxide (rGO) is studied as an anode material during Li uptake and release by applying synchrotron operando X-ray diffraction (XRD) and operando X-ray absorption spectroscopy (XAS), yielding a comprehensive picture of the reaction mechanisms. In the early stages of Li uptake, a monoxide is formed as an intermediate phase containing Fe2+ and Co2+ ions; this observation is in contrast to reaction pathways proposed in the literature. In the fully discharged state, metallic Co and Fe nanoparticles are embedded in an amorphous Li2 O matrix. During charge, metallic Co and Fe are oxidized simultaneously to Co2+ and Fe3+ , respectively, thus enabling a high and stable capacity to be achieved. Here, evidence is presented that the rGO acts as a support for the nanoparticles and prevents the particles from contact loss. The operando investigations are complemented by TEM, Raman spectroscopy, galvanostatic cycling, and cyclic voltammetry.

5.
ACS Appl Mater Interfaces ; 8(24): 15320-32, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27219129

RESUMO

Conversion reactions deliver much higher capacities than intercalation/deintercalation reactions of commercial Li ion batteries. However, the complex reaction pathways of conversion reactions occurring during Li uptake and release are not entirely understood, especially the irreversible capacity loss of Mn(III)-containing oxidic spinels. Here, we report for the first time on the electrochemical Li uptake and release of Co(II)Mn(III)Fe(III)O4 spinel nanoparticles and the conversion reaction mechanisms elucidated by combined operando X-ray diffraction, operando and ex-situ X-ray absorption spectroscopy, transmission electron microscopy, (7)Li NMR, and molecular dynamics simulation. The combination of these techniques enabled uncovering the pronounced electronic changes and structural alterations on different length scales in a unique way. The spinel nanoparticles undergo a successive phase transition into a mixed monoxide caused by a movement of the reduced cations from tetrahedral to octahedral positions. While the redox reactions Fe(3+) ↔ Fe(0) and Co(2+) ↔ Co(0) occur for many charge/discharge cycles, metallic Mn nanoparticles formed during the first discharge can only be oxidized to Mn(2+) during charge. This finding explains the partial capacity loss reported for Mn(III)-based spinels. Furthermore, the results of the investigations evidence that the reaction mechanisms on the nanoscale are very different from pathways of microcrystalline materials.

6.
Chemistry ; 21(39): 13637-45, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26270388

RESUMO

The compound [Co4(C6H14N2)4(µ4-S2)2(µ2-S2)4] (I) and the pseudo-polymorph [Co4(C6H14N2)4(µ4-S2)2(µ2-S2)4]⋅4 H2O (II) were obtained under solvothermal conditions (C6H14N2=trans-1,2-diaminocyclohexane). The structures feature S2(2-) ions exhibiting two different coordination modes. Terminal S2(2-) entities join two Co(3+) centres in a µ2 fashion, whereas the central S2(2-) groups connect four Co(3+) cations in a µ4-coordination mode. Compound II can be transformed into compound I by heat and storage over P2O5 and storing compound I in humid air yields in the formation of compound II. The intermolecular interactions investigated through Hirshfeld surface analysis reveal that besides S⋅⋅⋅H bonding close contacts are associated with relatively weak H⋅⋅⋅H interactions. A detailed DFT analysis of the bonding situation explains the long S-S bonds in the µ4-bridging S2(2-) units and the short bonds for the S2(2-) moieties in the µ2-connecting mode. Photocatalytic hydrogen evolution experiments demonstrate the potential of compound II as catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...