Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 72018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30320553

RESUMO

The light chains (KLCs) of the heterotetrameric microtubule motor kinesin-1, that bind to cargo adaptor proteins and regulate its activity, have a capacity to recognize short peptides via their tetratricopeptide repeat domains (KLCTPR). Here, using X-ray crystallography, we show how kinesin-1 recognizes a novel class of adaptor motifs that we call 'Y-acidic' (tyrosine flanked by acidic residues), in a KLC-isoform-specific manner. Binding specificities of Y-acidic motifs (present in JIP1 and in TorsinA) to KLC1TPR are distinct from those utilized for the recognition of W-acidic motifs, found in adaptors, that are KLC-isoform non-selective. However, a partial overlap on their receptor-binding sites implies that adaptors relying on Y-acidic and W-acidic motifs must act independently. We propose a model to explain why these two classes of motifs that bind to the concave surface of KLCTPR with similar low micromolar affinity can exhibit different capacities to promote kinesin-1 activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Polarização de Fluorescência , Células HeLa , Humanos , Cinesinas , Modelos Moleculares , Peptídeos/química , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína
2.
J Cell Sci ; 130(9): 1637-1651, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28302907

RESUMO

The molecular interplay between cargo recognition and regulation of the activity of the kinesin-1 microtubule motor is not well understood. Using the lysosome adaptor SKIP (also known as PLEKHM2) as model cargo, we show that the kinesin heavy chains (KHCs), in addition to the kinesin light chains (KLCs), can recognize tryptophan-acidic-binding determinants on the cargo when presented in the context of an extended KHC-interacting domain. Mutational separation of KHC and KLC binding shows that both interactions are important for SKIP-kinesin-1 interaction in vitro and that KHC binding is important for lysosome transport in vivo However, in the absence of KLCs, SKIP can only bind to KHC when autoinhibition is relieved, suggesting that the KLCs gate access to the KHCs. We propose a model whereby tryptophan-acidic cargo is first recognized by KLCs, resulting in destabilization of KHC autoinhibition. This primary event then makes accessible a second SKIP-binding site on the KHC C-terminal tail that is adjacent to the autoinhibitory IAK region. Thus, cargo recognition and concurrent activation of kinesin-1 proceed in hierarchical stepwise fashion driven by a dynamic network of inter- and intra-molecular interactions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cinesinas/metabolismo , Lisossomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Ligação ao Cálcio/metabolismo , Células HeLa , Humanos , Mutação/genética , Ligação Proteica , Domínios Proteicos , Ratos
3.
Structure ; 25(1): 107-120, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27989621

RESUMO

The sarcomeric cytoskeleton is a network of modular proteins that integrate mechanical and signaling roles. Obscurin, or its homolog obscurin-like-1, bridges the giant ruler titin and the myosin crosslinker myomesin at the M-band. Yet, the molecular mechanisms underlying the physical obscurin(-like-1):myomesin connection, important for mechanical integrity of the M-band, remained elusive. Here, using a combination of structural, cellular, and single-molecule force spectroscopy techniques, we decode the architectural and functional determinants defining the obscurin(-like-1):myomesin complex. The crystal structure reveals a trans-complementation mechanism whereby an incomplete immunoglobulin-like domain assimilates an isoform-specific myomesin interdomain sequence. Crucially, this unconventional architecture provides mechanical stability up to forces of ∼135 pN. A cellular competition assay in neonatal rat cardiomyocytes validates the complex and provides the rationale for the isoform specificity of the interaction. Altogether, our results reveal a novel binding strategy in sarcomere assembly, which might have implications on muscle nanomechanics and overall M-band organization.


Assuntos
Conectina/química , Conectina/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/química , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Cristalografia por Raios X , Citoesqueleto/metabolismo , Humanos , Imunoglobulinas/metabolismo , Modelos Moleculares , Músculo Esquelético/metabolismo , Miócitos Cardíacos/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas Serina-Treonina Quinases , Ratos , Sarcômeros/metabolismo
4.
Neuron ; 90(5): 1000-15, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27210554

RESUMO

Cytoplasmic dynein, the major motor driving retrograde axonal transport, must be actively localized to axon terminals. This localization is critical as dynein powers essential retrograde trafficking events required for neuronal survival, such as neurotrophic signaling. Here, we demonstrate that the outward transport of dynein from soma to axon terminal is driven by direct interactions with the anterograde motor kinesin-1. In developing neurons, we find that dynein dynamically cycles between neurites, following kinesin-1 and accumulating in the nascent axon coincident with axon specification. In established axons, dynein is constantly transported down the axon at slow axonal transport speeds; inhibition of the kinesin-1-dynein interaction effectively blocks this process. In vitro and live-imaging assays to investigate the underlying mechanism lead us to propose a new model for the slow axonal transport of cytosolic cargos, based on short-lived direct interactions of cargo with a highly processive anterograde motor. VIDEO ABSTRACT.


Assuntos
Transporte Axonal , Dineínas do Citoplasma/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Animais , Células Cultivadas , Dineínas/genética , Técnicas de Introdução de Genes , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Camundongos , Neuritos/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(9): 2418-23, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884162

RESUMO

The light chains (KLCs) of the microtubule motor kinesin-1 bind cargoes and regulate its activity. Through their tetratricopeptide repeat domain (KLC(TPR)), they can recognize short linear peptide motifs found in many cargo proteins characterized by a central tryptophan flanked by aspartic/glutamic acid residues (W-acidic). Using a fluorescence resonance energy transfer biosensor in combination with X-ray crystallographic, biochemical, and biophysical approaches, we describe how an intramolecular interaction between the KLC2(TPR) domain and a conserved peptide motif within an unstructured region of the molecule, partly occludes the W-acidic binding site on the TPR domain. Cargo binding displaces this interaction, effecting a global conformational change in KLCs resulting in a more extended conformation. Thus, like the motor-bearing kinesin heavy chains, KLCs exist in a dynamic conformational state that is regulated by self-interaction and cargo binding. We propose a model by which, via this molecular switch, W-acidic cargo binding regulates the activity of the holoenzyme.


Assuntos
Cinesinas/antagonistas & inibidores , Sequência de Aminoácidos , Humanos , Cinesinas/química , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
6.
J Mol Biol ; 427(4): 718-736, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25490259

RESUMO

M10 is the most C-terminal immunoglobulin (Ig) domain of the giant protein titin and a frequent target of disease-linked mutations. Currently, it is the only known muscle Ig domain able to interact with two alternative ligands-obscurin and obscurin-like-1 (Obsl1)-in different sarcomeric subregions. Obscurin and Obsl1 use their homologous N-terminal Ig domain (O1 in obscurin and OL1 in Obsl1) to bind M10 in a mutually exclusive manner. We present here the X-ray structure of the human titin:obscurin M10:O1 complex extending our previous work on the M10:OL1 interaction. Similar to M10:OL1, the M10:O1 complex displays a chevron-shaped antiparallel Ig-Ig architecture held together by a conserved molecular interface, which we validated by isothermal titration calorimetry and sorting experiments in neonatal rat cardiomyocytes. O1, although structurally related to OL1 and M10, both members of the intermediate set (I-set) Ig family, presents an intriguing switch of its ßA' strand. This leads to structural differences between the complexes, particularly for the "open side" of the chevron-shaped assembly. A bioinformatics analysis reveals that the ßA'-switch observed for O1 is rare and that it is involved in mediating protein-protein interactions. Molecular dynamics simulations also suggest that this topological alteration substantially increases local flexibility compared to the conventional I-set Ig domains. The O1/OL1 Ig domains are candidate discriminatory structural modules potentially directing the binding of specific additional partners at the M-band. Cellular sorting experiments in neonatal rat cardiomyocytes are consistent with the view that the titin:obscurin/Obsl1 complexes might be a platform for higher-order interactions.


Assuntos
Conectina/ultraestrutura , Miócitos Cardíacos/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/ultraestrutura , Sequência de Aminoácidos , Animais , Calorimetria , Conectina/química , Cristalografia por Raios X , Proteínas do Citoesqueleto/química , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Complexos Multiproteicos/ultraestrutura , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína , Ratos , Fatores de Troca de Nucleotídeo Guanina Rho/química
7.
Science ; 340(6130): 356-9, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23519214

RESUMO

Kinesin-mediated cargo transport is required for many cellular functions and plays a key role in pathological processes. Structural information on how kinesins recognize their cargoes is required for a molecular understanding of this fundamental and ubiquitous process. Here, we present the crystal structure of the tetratricopeptide repeat domain of kinesin light chain 2 in complex with a cargo peptide harboring a "tryptophan-acidic" motif derived from SKIP (SifA-kinesin interacting protein), a critical host determinant in Salmonella pathogenesis and a regulator of lysosomal positioning. Structural data together with biophysical, biochemical, and cellular assays allow us to propose a framework for intracellular transport based on the binding by kinesin-1 of W-acidic cargo motifs through a combination of electrostatic interactions and sequence-specific elements, providing direct molecular evidence of the mechanisms for kinesin-1:cargo recognition.


Assuntos
Proteínas de Bactérias/química , Glicoproteínas/química , Proteínas Associadas aos Microtúbulos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Glicoproteínas/metabolismo , Células HeLa , Humanos , Cinesinas , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Dados de Sequência Molecular , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Triptofano/química , Triptofano/genética , Triptofano/metabolismo
8.
Proc Natl Acad Sci U S A ; 107(7): 2908-13, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133654

RESUMO

In the sarcomeric M-band, the giant ruler proteins titin and obscurin, its small homologue obscurin-like-1 (obsl1), and the myosin cross-linking protein myomesin form a ternary complex that is crucial for the function of the M-band as a mechanical link. Mutations in the last titin immunoglobulin (Ig) domain M10, which interacts with the N-terminal Ig-domains of obscurin and obsl1, lead to hereditary muscle diseases. The M10 domain is unusual not only in that it is a frequent target of disease-linked mutations, but also in that it is the only currently known muscle Ig-domain that interacts with two ligands--obscurin and obsl1--in different sarcomeric subregions. Using x-ray crystallography, we show the structural basis for titin M10 interaction with obsl1 in a novel antiparallel Ig-Ig architecture and unravel the molecular basis of titin-M10 linked myopathies. The severity of these pathologies correlates with the disruption of the titin-obsl1/obscurin complex. Conserved signature residues at the interface account for differences in affinity that direct the cellular sorting in cardiomyocytes. By engineering the interface signature residues of obsl1 to obscurin, and vice versa, their affinity for titin can be modulated similar to the native proteins. In single-molecule force-spectroscopy experiments, both complexes yield at forces of around 30 pN, much lower than those observed for the mechanically stable Z-disk complex of titin and telethonin, suggesting why even moderate weakening of the obsl1/obscurin-titin links has severe consequences for normal muscle functions.


Assuntos
Proteínas do Citoesqueleto/química , Modelos Moleculares , Complexos Multiproteicos/química , Proteínas Musculares/química , Doenças Musculares/genética , Proteínas Quinases/química , Sarcômeros/química , Animais , Calorimetria , Células Cultivadas , Conectina , Cristalografia por Raios X , Humanos , Microscopia de Força Atômica , Microscopia Confocal , Proteínas Musculares/genética , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...