Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 203(1): 58-75, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31109957

RESUMO

CD40 is a costimulatory receptor on APCs that is critical for the induction and maintenance of humoral and cell-mediated immunity. Accordingly, CD40 and its ligand, CD40L, have long been considered targets for the treatment of autoimmune diseases. We developed a rat/mouse chimeric anti-mouse CD40 antagonist mAb, 201A3, and evaluated its ability to alleviate murine lupus. Treatment of NZB/W-F1 mice with 201A3 after the onset of severe proteinuria rapidly reversed established severe proteinuria and nephritis and largely restored normal glomerular and tubular morphology. This coincided with a normalization of the expression of genes associated with proteinuria and injury by kidney parenchymal cells. Anti-CD40 treatment also prevented and reversed loss of saliva production and sialadenitis. These effects on kidney and salivary gland function were confirmed using mice of a second strain, MRL/Mp-lpr/lpr, and extended to alleviating joint inflammation. Immunologically, anti-CD40 treatment disrupted multiple processes that contribute to the pathogenesis of systemic lupus erythematosus (SLE), including autoreactive B cell activation, T effector cell function in target tissues, and type I IFN production. This ability to disrupt disease-critical immunological mechanisms, to reverse glomerular and tubular injury at the cellular and gene expression levels, and to confer exceptional therapeutic efficacy suggests that CD40 is a central disease pathway in murine SLE. Thus, a CD40 antagonist Ab could be an effective therapeutic in the treatment of SLE.


Assuntos
Anticorpos Bloqueadores/uso terapêutico , Linfócitos B/imunologia , Antígenos CD40/imunologia , Imunoterapia/métodos , Glomérulos Renais/patologia , Lúpus Eritematoso Sistêmico/terapia , Proteínas Recombinantes de Fusão/uso terapêutico , Linfócitos T/imunologia , Animais , Autoantígenos/imunologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Interferon Tipo I/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Camundongos Endogâmicos MRL lpr , Camundongos Endogâmicos NZB , Proteinúria , Ratos , Eliminação Salivar
2.
J Immunol ; 177(4): 2610-20, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16888023

RESUMO

TNF-like weak inducer of apoptosis (TWEAK) is a TNF family member with pleiotropic effects on a variety of cell types, one of which is the induction of proinflammatory cytokines by synovial fibroblasts derived from rheumatoid arthritis (RA) patients. In this study, we report that the serum TWEAK level was dramatically elevated during mouse collagen-induced arthritis (CIA) and blocking TWEAK by a neutralizing mAb significantly reduced the clinical severity of CIA. Histological analyses also revealed that TWEAK inhibition diminished joint inflammation, synovial angiogenesis, as well as cartilage and bone erosion. Anti-TWEAK treatment proved efficacious when administered just before the disease onset but not during the priming phase of CIA. Consistent with this, TWEAK inhibition did not affect either cellular or humoral responses to collagen. In contrast, TWEAK inhibition significantly reduced serum levels of a panel of arthritogenic mediators, including chemokines such as MIP-1beta (CCL-4), lymphotactin (XCL-1), IFN-gamma-inducible protein 10 (IP-10) (CXCL-10), MCP-1 (CCL-2), and RANTES (CCL-5), as well as the matrix metalloprotease-9. Exploring the possible role of the TWEAK/Fn14 pathway in human RA pathogenesis, we showed that TWEAK can target human primary chondrocytes and osteoblast-like cells, in addition to synovial fibroblasts. We further demonstrated that TWEAK induced the production of matrix metalloproteases in human chondrocytes and potently inhibited chondrogenesis and osteogenesis using in vitro models. These results provide evidence for a novel cytokine pathway that contributes to joint tissue inflammation, angiogenesis, and damage, as well as may inhibit endogenous repair, suggesting that TWEAK may be a new therapeutic target for human RA.


Assuntos
Artrite Experimental/metabolismo , Artrite Experimental/patologia , Mediadores da Inflamação/fisiologia , Fatores de Necrose Tumoral/fisiologia , Animais , Apoptose/imunologia , Artrite Experimental/sangue , Células Cultivadas , Colágeno Tipo II/administração & dosagem , Citocina TWEAK , Adjuvante de Freund/administração & dosagem , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/sangue , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Receptores do Fator de Necrose Tumoral/metabolismo , Receptores do Fator de Necrose Tumoral/fisiologia , Receptor de TWEAK , Inibidores do Fator de Necrose Tumoral , Fatores de Necrose Tumoral/biossíntese , Fatores de Necrose Tumoral/sangue
3.
Blood ; 102(13): 4464-71, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-12933585

RESUMO

Interaction of very late antigen-4 (VLA-4) with its ligand vascular cell adhesion molecule-1 (VCAM-1) is required for central nervous system (CNS) migration of encephalitogenic T cells in relapsing experimental autoimmune encephalomyelitis (R-EAE). Anti-VLA-4 monoclonal antibody (mAb) treatment prior to EAE onset inhibits disease induction; however, treatment initiated after the appearance of clinical symptoms increases relapse rates, augments Th1 responses, and enhances epitope spreading perhaps due to the activation of costimulatory signals. To negate the potential costimulatory activity of intact anti-VLA-4, we examined the ability of BIO 5192, a small-molecule VLA-4 antagonist, to regulate active proteolipid protein 139-151 (PLP139-151)-induced R-EAE. BIO 5192 administered one week after peptide priming (ie, before clinical disease onset) delayed the clinical disease onset but led to severe disease exacerbation upon treatment removal. BIO 5192 treatment initiated during disease remission moderately enhanced clinical disease while mice were on treatment and also resulted in posttreatment exacerbation. Interestingly, BIO 5192 treatment begun at the peak of acute disease accelerated entrance into disease remission and inhibited relapses, but treatment removal again exacerbated disease. Enhanced disease was caused by the release of encephalitogenic cells from the periphery and the rapid accumulation of T cells in the CNS. Collectively, these results further demonstrate the complexity of VLA-4/VCAM interactions, particularly in a relapsing-remitting autoimmune disease.


Assuntos
Quimiotaxia de Leucócito/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Integrina alfa4beta1/antagonistas & inibidores , Oligopeptídeos/uso terapêutico , Compostos de Fenilureia/uso terapêutico , Células Th1/patologia , Sequência de Aminoácidos , Animais , Barreira Hematoencefálica/imunologia , Adesão Celular/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Modelos Animais de Doenças , Progressão da Doença , Esquema de Medicação , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Integrina alfa4beta1/fisiologia , Camundongos , Camundongos Endogâmicos , Dados de Sequência Molecular , Esclerose Múltipla Recidivante-Remitente , Proteína Proteolipídica de Mielina/imunologia , Oligopeptídeos/administração & dosagem , Oligopeptídeos/toxicidade , Fragmentos de Peptídeos/imunologia , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/toxicidade , Recidiva , Células Th1/imunologia , Molécula 1 de Adesão de Célula Vascular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...