Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 249: 113719, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37003127

RESUMO

We present two open-source Python packages: "electron spectro-microscopy" (espm) and "electron microscopy tables" (emtables). The espm software enables the simulation of scanning transmission electron microscopy energy-dispersive X-ray spectroscopy datacubes, based on user-defined chemical compositions and spatial abundance maps of constituent phases. The simulation process uses X-ray emission cross-sections generated via state-of-the-art calculations made with emtables. These tables are designed to be easily modifiable, either manually or using espm. The simulation framework is designed to test the application of decomposition algorithms for the analysis of STEM-EDX spectrum images with access to a known ground truth. We validate our approach using the case of a complex geology-related sample, comparing raw simulated and experimental datasets and the outputs of their non-negative matrix factorization. In addition to testing machine learning algorithms, our packages will also help experimental design, for instance, predicting dataset characteristics or establishing minimum counts needed to measure nanoscale features.

2.
Front Artif Intell ; 4: 673062, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34151255

RESUMO

Weak gravitational lensing mass maps play a crucial role in understanding the evolution of structures in the Universe and our ability to constrain cosmological models. The prediction of these mass maps is based on expensive N-body simulations, which can create a computational bottleneck for cosmological analyses. Simulation-based emulators of map summary statistics, such as the matter power spectrum and its covariance, are starting to play increasingly important role, as the analytical predictions are expected to reach their precision limits for upcoming experiments. Creating an emulator of the cosmological mass maps themselves, rather than their summary statistics, is a more challenging task. Modern deep generative models, such as Generative Adversarial Networks (GAN), have demonstrated their potential to achieve this goal. Most existing GAN approaches produce simulations for a fixed value of the cosmological parameters, which limits their practical applicability. We propose a novel conditional GAN model that is able to generate mass maps for any pair of matter density Ω m and matter clustering strength σ 8, parameters which have the largest impact on the evolution of structures in the Universe, for a given source galaxy redshift distribution n(z). Our results show that our conditional GAN can interpolate efficiently within the space of simulated cosmologies, and generate maps anywhere inside this space with good visual quality high statistical accuracy. We perform an extensive quantitative comparison of the N-body and GAN -generated maps using a range of metrics: the pixel histograms, peak counts, power spectra, bispectra, Minkowski functionals, correlation matrices of the power spectra, the Multi-Scale Structural Similarity Index (MS-SSIM) and our equivalent of the Fréchet Inception Distance. We find a very good agreement on these metrics, with typical differences are <5% at the center of the simulation grid, and slightly worse for cosmologies at the grid edges. The agreement for the bispectrum is slightly worse, on the <20% level. This contribution is a step toward building emulators of mass maps directly, capturing both the cosmological signal and its variability. We make the code and the data publicly available.

3.
EURASIP J Adv Signal Process ; 2019(1): 36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31983922

RESUMO

This paper considers regression tasks involving high-dimensional multivariate processes whose structure is dependent on some known graph topology. We put forth a new definition of time-vertex wide-sense stationarity, or joint stationarity for short, that goes beyond product graphs. Joint stationarity helps by reducing the estimation variance and recovery complexity. In particular, for any jointly stationary process (a) one reliably learns the covariance structure from as little as a single realization of the process and (b) solves MMSE recovery problems, such as interpolation and denoising, in computational time nearly linear on the number of edges and timesteps. Experiments with three datasets suggest that joint stationarity can yield accuracy improvements in the recovery of high-dimensional processes evolving over a graph, even when the latter is only approximately known, or the process is not strictly stationary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...