Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 212(6): 1029-1039, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38284984

RESUMO

Both identity and plasticity of CD4 T helper (Th) cells are regulated in part by epigenetic mechanisms. However, a method that reliably and readily profiles DNA base modifications is still needed to finely study Th cell differentiation. Cytosine methylation in CpG context (5mCpG) and cytosine hydroxymethylation (5hmCpG) are DNA modifications that identify stable cell phenotypes, but their potential to characterize intermediate cell transitions has not yet been evaluated. To assess transition states in Th cells, we developed a method to profile Th cell identity using Cas9-targeted single-molecule nanopore sequencing. Targeting as few as 10 selected genomic loci, we were able to distinguish major in vitro polarized murine T cell subtypes, as well as intermediate phenotypes, by their native DNA 5mCpG patterns. Moreover, by using off-target sequences, we were able to infer transcription factor activities relevant to each cell subtype. Detection of 5mCpG and 5hmCpG was validated on intestinal Th17 cells escaping transforming growth factor ß control, using single-molecule adaptive sampling. A total of 21 differentially methylated regions mapping to the 10-gene panel were identified in pathogenic Th17 cells relative to their nonpathogenic counterpart. Hence, our data highlight the potential to exploit native DNA methylation profiling to study physiological and pathological transition states of Th cells.


Assuntos
Metilação de DNA , Epigênese Genética , Animais , Camundongos , Citosina , DNA/metabolismo , Células Th17/metabolismo
2.
Cell Rep ; 37(5): 109911, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731632

RESUMO

Suppressive regulatory T cell (Treg) differentiation is controlled by diverse immunometabolic signaling pathways and intracellular metabolites. Here we show that cell-permeable α-ketoglutarate (αKG) alters the DNA methylation profile of naive CD4 T cells activated under Treg polarizing conditions, markedly attenuating FoxP3+ Treg differentiation and increasing inflammatory cytokines. Adoptive transfer of these T cells into tumor-bearing mice results in enhanced tumor infiltration, decreased FoxP3 expression, and delayed tumor growth. Mechanistically, αKG leads to an energetic state that is reprogrammed toward a mitochondrial metabolism, with increased oxidative phosphorylation and expression of mitochondrial complex enzymes. Furthermore, carbons from ectopic αKG are directly utilized in the generation of fatty acids, associated with lipidome remodeling and increased triacylglyceride stores. Notably, inhibition of either mitochondrial complex II or DGAT2-mediated triacylglyceride synthesis restores Treg differentiation and decreases the αKG-induced inflammatory phenotype. Thus, we identify a crosstalk between αKG, mitochondrial metabolism and triacylglyceride synthesis that controls Treg fate.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ácidos Cetoglutáricos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Fibrossarcoma/genética , Fibrossarcoma/imunologia , Fibrossarcoma/metabolismo , Fibrossarcoma/terapia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Homeostase , Humanos , Imunoterapia Adotiva , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fenótipo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/transplante , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...