Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 32(3): 382-395.e10, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38309259

RESUMO

Methionine is an essential proteinogenic amino acid, but its excess can lead to deleterious effects. Inborn errors of methionine metabolism resulting from loss of function in cystathionine ß-synthase (CBS) cause classic homocystinuria (HCU), which is managed by a methionine-restricted diet. Synthetic biotics are gastrointestinal tract-targeted live biotherapeutics that can be engineered to replicate the benefits of dietary restriction. In this study, we assess whether SYNB1353, an E. coli Nissle 1917 derivative, impacts circulating methionine and homocysteine levels in animals and healthy volunteers. In both mice and nonhuman primates (NHPs), SYNB1353 blunts the appearance of plasma methionine and plasma homocysteine in response to an oral methionine load. A phase 1 clinical study conducted in healthy volunteers subjected to an oral methionine challenge demonstrates that SYNB1353 is well tolerated and blunts plasma methionine by 26%. Overall, SYNB1353 represents a promising approach for methionine reduction with potential utility for the treatment of HCU.


Assuntos
Homocistinúria , Metionina , Humanos , Camundongos , Animais , Metionina/metabolismo , Metionina/uso terapêutico , Voluntários Saudáveis , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Animais de Doenças , Homocistinúria/tratamento farmacológico , Homocistinúria/metabolismo , Racemetionina , Homocisteína/uso terapêutico
2.
Alcohol Clin Exp Res (Hoboken) ; 47(5): 856-867, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36871955

RESUMO

BACKGROUND AND PURPOSE: Gut bacteria metabolize tryptophan into indoles. Intestinal levels of the tryptophan metabolite indole-3-acetic acid are reduced in patients with alcohol-associated hepatitis. Supplementation of indole-3-acetic acid protects against ethanol-induced liver disease in mice. The aim of this study was to evaluate the effect of engineered bacteria producing indoles as Aryl-hydrocarbon receptor (Ahr) agonists. METHODS: C57BL/6 mice were subjected to chronic-plus-binge ethanol feeding and orally given PBS, control Escherichia coli Nissle 1917 (EcN) or engineered EcN-Ahr. The effects of EcN and EcN-Ahr were also examined in mice lacking Ahr in interleukin 22 (Il22)-producing cells. RESULTS: Through the deletion of endogenous genes trpR and tnaA, coupled with overexpression of a feedback-resistant tryptophan biosynthesis operon, EcN-Ahr were engineered to overproduce tryptophan. Additional engineering allowed conversion of this tryptophan to indoles including indole-3-acetic acid and indole-3-lactic acid. EcN-Ahr ameliorated ethanol-induced liver disease in C57BL/6 mice. EcN-Ahr upregulated intestinal gene expression of Cyp1a1, Nrf2, Il22, Reg3b, and Reg3g, and increased Il22-expressing type 3 innate lymphoid cells. In addition, EcN-Ahr reduced translocation of bacteria to the liver. The beneficial effect of EcN-Ahr was abrogated in mice lacking Ahr expression in Il22-producing immune cells. CONCLUSIONS: Our findings indicate that tryptophan metabolites locally produced by engineered gut bacteria mitigate liver disease via Ahr-mediated activation in intestinal immune cells.

3.
PLoS One ; 18(2): e0280499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730255

RESUMO

E. coli Nissle (EcN) is a non-pathogenic probiotic bacterium of the Enterobacteriaceae family that has been used for over a century to promote general gut health. Despite the history of safe usage of EcN, concerns have been raised regarding the presence of the pks gene cluster, encoding the genotoxin colibactin, due to its association with colorectal cancer. Here, we sought to determine the effect of pks island removal on the in vitro and in vivo robustness and activity of EcN and EcN-derived strains. A deletion of the pks island (Δpks) was constructed in wild type and engineered strains of EcN using lambda red recombineering. Mass spectrometric measurement of N-myristoyl-D-asparagine, released during colibactin maturation, confirmed that the pks deletion abrogated colibactin production. Growth curves were comparable between Δpks strains and their isogenic parents, and wild type EcN displayed no competitive advantage to the Δpks strain in mixed culture. Deletion of pks also had no effect on the activity of strains engineered to degrade phenylalanine (SYNB1618 and SYNB1934) or oxalate (SYNB8802). Furthermore, 1:1 mixed dosing of wild type and Δpks EcN in preclinical mouse and nonhuman primate models demonstrated no competitive disadvantage for the Δpks strain with regards to transit time or colonization. Importantly, there was no significant difference on in vivo strain performance between the clinical-stage strain SYNB1934 and its isogenic Δpks variant with regards to recovery of the quantitative strain-specific biomarkers d5- trans-cinnamic acid, and d5-hippuric acid. Taken together, these data support that the pks island is dispensable for Synthetic Biotic fitness and activity in vivo and that its removal from engineered strains of EcN will not have a deleterious effect on strain efficacy.


Assuntos
Proteínas de Escherichia coli , Policetídeos , Camundongos , Animais , Escherichia coli/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteínas de Escherichia coli/genética , Policetídeos/metabolismo , Família Multigênica
4.
Mol Syst Biol ; 18(3): e10539, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35253995

RESUMO

Enteric hyperoxaluria (EH) is a metabolic disease caused by excessive absorption of dietary oxalate leading to the formation of chronic kidney stones and kidney failure. There are no approved pharmaceutical treatments for EH. SYNB8802 is an engineered bacterial therapeutic designed to consume oxalate in the gut and lower urinary oxalate as a potential treatment for EH. Oral administration of SYNB8802 leads to significantly decreased urinary oxalate excretion in healthy mice and non-human primates, demonstrating the strain's ability to consume oxalate in vivo. A mathematical modeling framework was constructed that combines in vitro and in vivo preclinical data to predict the effects of SYNB8802 administration on urinary oxalate excretion in humans. Simulations of SYNB8802 administration predict a clinically meaningful lowering of urinary oxalate excretion in healthy volunteers and EH patients. Together, these findings suggest that SYNB8802 is a promising treatment for EH.


Assuntos
Hiperoxalúria , Animais , Simulação por Computador , Feminino , Humanos , Hiperoxalúria/etiologia , Hiperoxalúria/urina , Masculino , Camundongos , Oxalatos/metabolismo , Oxalatos/urina
5.
Liver Int ; 41(5): 1020-1032, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548108

RESUMO

Hyperammonemia associated with chronic liver disease (CLD) is implicated in the pathogenesis of hepatic encephalopathy (HE). The gut is a major source of ammonia production that contributes to hyperammonemia in CLD and HE and remains the primary therapeutic target for lowering hyperammonemia. As an ammonia-lowering strategy, Escherichia coli Nissle 1917 bacterium was genetically modified to consume and convert ammonia to arginine (S-ARG). S-ARG was further modified to additionally synthesize butyrate (S-ARG + BUT). Both strains were evaluated in bile-duct ligated (BDL) rats; experimental model of CLD and HE. METHODS: One-week post-surgery, BDLs received non-modified EcN (EcN), S-ARG, S-ARG + BUT (3x1011 CFU/day) or vehicle until sacrifice at 3 or 5 weeks. Plasma (ammonia/pro-inflammatory/liver function), liver fibrosis (hydroxyproline), liver mRNA (pro-inflammatory/fibrogenic/anti-apoptotic) and colon mRNA (pro-inflammatory) biomarkers were measured post-sacrifice. Memory, motor-coordination, muscle-strength and locomotion were assessed at 5 weeks. RESULTS: In BDL-Veh rats, hyperammonemia developed at 3 and further increased at 5 weeks. This rise was prevented by S-ARG and S-ARG + BUT, whereas EcN was ineffective. Memory impairment was prevented only in S-ARG + BUT vs BDL-Veh. Systemic inflammation (IL-10/MCP-1/endotoxin) increased at 3 and 5 weeks in BDL-Veh. S-ARG + BUT attenuated inflammation at both timepoints (except 5-week endotoxin) vs BDL-Veh, whereas S-ARG only attenuated IP-10 and MCP-1 at 3 weeks. Circulating ALT/AST/ALP/GGT/albumin/bilirubin and gene expression of liver function markers (IL-10/IL-6/IL-1ß/TGF-ß/α-SMA/collagen-1α1/Bcl-2) were not normalized by either strain. Colonic mRNA (TNF-α/IL-1ß/occludin) markers were attenuated by synthetic strains at both timepoints vs BDL-Veh. CONCLUSION: S-ARG and S-ARG + BUT attenuated hyperammonemia, with S-ARG + BUT additional memory protection likely due to greater anti-inflammatory effect. These innovative strategies, particularly S-ARG + BUT, have potential to prevent HE.


Assuntos
Hiperamonemia , Animais , Bile , Ductos Biliares , Modelos Animais de Doenças , Escherichia coli , Ligadura , Ratos
6.
Sci Transl Med ; 11(475)2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651324

RESUMO

The intestine is a major source of systemic ammonia (NH3); thus, capturing part of gut NH3 may mitigate disease symptoms in conditions of hyperammonemia such as urea cycle disorders and hepatic encephalopathy. As an approach to the lowering of blood ammonia arising from the intestine, we engineered the orally delivered probiotic Escherichia coli Nissle 1917 to create strain SYNB1020 that converts NH3 to l-arginine (l-arg). We up-regulated arginine biosynthesis in SYNB1020 by deleting a negative regulator of l-arg biosynthesis and inserting a feedback-resistant l-arg biosynthetic enzyme. SYNB1020 produced l-arg and consumed NH3 in an in vitro system. SYNB1020 reduced systemic hyperammonemia, improved survival in ornithine transcarbamylase-deficient spfash mice, and decreased hyperammonemia in the thioacetamide-induced liver injury mouse model. A phase 1 clinical study was conducted including 52 male and female healthy adult volunteers. SYNB1020 was well tolerated at daily doses of up to 1.5 × 1012 colony-forming units administered for up to 14 days. A statistically significant dose-dependent increase in urinary nitrate, plasma 15N-nitrate (highest dose versus placebo, P = 0.0015), and urinary 15N-nitrate was demonstrated, indicating in vivo SYNB1020 activity. SYNB1020 concentrations reached steady state by the second day of dosing, and excreted cells were alive and metabolically active as evidenced by fecal arginine production in response to added ammonium chloride. SYNB1020 was no longer detectable in feces 2 weeks after the last dose. These results support further clinical development of SYNB1020 for hyperammonemia disorders including urea cycle disorders and hepatic encephalopathy.


Assuntos
Escherichia coli/genética , Engenharia Genética , Voluntários Saudáveis , Hiperamonemia/terapia , Amônia/sangue , Amônia/metabolismo , Animais , Arginina/metabolismo , Vias Biossintéticas , Modelos Animais de Doenças , Fezes/química , Feminino , Humanos , Hiperamonemia/sangue , Hiperamonemia/urina , Macaca fascicularis , Masculino , Camundongos , Nitratos/sangue , Nitratos/urina , Estresse Fisiológico/genética , Análise de Sobrevida
7.
PLoS One ; 13(8): e0202182, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30106981

RESUMO

Fibroblast growth factor 21 (FGF21) is a hormone secreted by the liver in response to metabolic stress. In addition to its well-characterized effects on energy homeostasis, FGF21 has been shown to increase water intake in animals. In this study, we sought to further explore the effects of FGF21 on fluid homeostasis in rats. A single dose of a long-acting FGF21 analog, PF-05231023, significantly increased water consumption, which was accompanied by an elevation in urine output that appeared prior to a significant change in water intake. We observed that FGF21 rapidly and significantly increased heart rate and blood pressure in telemeter-implanted rats, before changes in urine output and water intake were observed. Our data suggest that sympathetic activation may contribute to the pathogenesis by which FGF21 increases blood pressure as the baroreceptor unloading induced reflex tachycardia was significantly elevated in FGF21-treated animals. However, FGF21 was still capable of causing hypertension in animals in which approximately 40% of the sympathetic post-ganglionic neurons were ablated. Our data suggest that FGF21-induced water intake is in fact secondary to diuresis, which we propose to be a compensatory mechanism engaged to alleviate the acute hypertension caused by FGF21.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Diurese/efeitos dos fármacos , Diuréticos/farmacologia , Ingestão de Líquidos/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Animais , Barorreflexo/efeitos dos fármacos , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Preparações de Ação Retardada , Diurese/fisiologia , Ingestão de Líquidos/fisiologia , Água Potável , Eletrólitos/sangue , Eletrólitos/urina , Fatores de Crescimento de Fibroblastos/metabolismo , Guanetidina/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Ratos Wistar
8.
Am J Physiol Endocrinol Metab ; 306(10): E1176-87, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24714397

RESUMO

Glycerol-3-phosphate acyltransferases (GPATs) catalyze the first step in the synthesis of glycerolipids and glycerophospholipids. Microsomal GPAT, the major GPAT activity, is encoded by at least two closely related genes, GPAT3 and GPAT4. To investigate the in vivo functions of GPAT3, we generated Gpat3-deficient (Gpat3(-/-)) mice. Total GPAT activity in white adipose tissue of Gpat3(-/-) mice was reduced by 80%, suggesting that GPAT3 is the predominant GPAT in this tissue. In liver, GPAT3 deletion had no impact on total GPAT activity but resulted in a 30% reduction in N-ethylmaleimide-sensitive GPAT activity. The Gpat3(-/-) mice were viable and fertile and exhibited no obvious metabolic abnormalities on standard laboratory chow. However, when fed a high-fat diet, female Gpat3(-/-) mice showed decreased body weight gain and adiposity and increased energy expenditure. Increased energy expenditure was also observed in male Gpat3(-/-) mice, although it was not accompanied by a significant change in body weight. GPAT3 deficiency lowered fed, but not fasted, glucose levels and tended to improve glucose tolerance in diet-induced obese male and female mice. On a high-fat diet, Gpat3(-/-) mice had enlarged livers and displayed a dysregulation in cholesterol metabolism. These data establish GPAT3 as the primary GPAT in white adipose tissue and reveal an important role of the enzyme in regulating energy, glucose, and lipid homeostasis.


Assuntos
Tecido Adiposo Branco/enzimologia , Colesterol/metabolismo , Metabolismo Energético/genética , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Obesidade/enzimologia , Animais , Dieta/efeitos adversos , Feminino , Glicerol-3-Fosfato O-Aciltransferase/genética , Homeostase/genética , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética
9.
PLoS One ; 8(5): e62616, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23700410

RESUMO

Strong genetic data link the Tyrosine kinase receptor B (TrkB) and its major endogenous ligand brain-derived neurotrophic factor (BDNF) to the regulation of energy homeostasis, with loss-of-function mutations in either gene causing severe obesity in both mice and humans. It has previously been reported that peripheral administration of the endogenous TrkB agonist ligand neurotrophin-4 (NT-4) profoundly decreases food intake and body weight in rodents, while paradoxically increasing these same parameters in monkeys. We generated a humanized TrkB agonist antibody, TAM-163, and characterized its therapeutic potential in several models of type 2 diabetes and obesity. In vitro, TAM-163 bound to human and rodent TrkB with high affinity, activated all aspects of the TrkB signaling cascade and induced TrkB internalization and degradation in a manner similar to BDNF. In vivo, peripheral administration of TAM-163 decreased food intake and/or body weight in mice, rats, hamsters, and dogs, but increased food intake and body weight in monkeys. The magnitude of weight change was similar in rodents and non-human primates, occurred at doses where there was no appreciable penetration into deep structures of the brain, and could not be explained by differences in exposures between species. Rather, peripherally administered TAM-163 localized to areas in the hypothalamus and the brain stem located outside the blood-brain barrier in a similar manner between rodents and non-human primates, suggesting differences in neuroanatomy across species. Our data demonstrate that a TrkB agonist antibody, administered peripherally, causes species-dependent effects on body weight similar to the endogenous TrkB ligand NT-4. The possible clinical utility of TrkB agonism in treating weight regulatory disorder, such as obesity or cachexia, will require evaluation in man.


Assuntos
Anticorpos Monoclonais/farmacologia , Depressores do Apetite/farmacologia , Peso Corporal/efeitos dos fármacos , Receptor trkB/agonistas , Administração Intravenosa , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Depressores do Apetite/administração & dosagem , Depressores do Apetite/farmacocinética , Cricetinae , Dieta Hiperlipídica/efeitos adversos , Cães , Avaliação Pré-Clínica de Medicamentos , Ingestão de Energia/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Hipotálamo/metabolismo , Macaca fascicularis , Macaca mulatta , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/patologia , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Receptor trkB/metabolismo , Distribuição Tecidual
10.
MAbs ; 5(3): 373-83, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23529133

RESUMO

TAM-163, an agonist monoclonal antibody targeting tyrosine receptor kinase-B (TrkB), is currently being investigated as a potential body weight modulatory agent in humans. To support the selection of the dose range for the first-in-human (FIH) trial of TAM-163, we conducted a mechanistic analysis of the pharmacokinetic (PK) and pharmacodynamic (PD) data (e.g., body weight gain) obtained in lean cynomolgus and obese rhesus monkeys following single doses ranging from 0.3 to 60 mg/kg. A target-mediated drug disposition (TMDD) model was used to describe the observed nonlinear PK and Emax approach was used to describe the observed dose-dependent PD effect. The TMDD model development was supported by the experimental determination of the binding affinity constant (9.4 nM) and internalization rate of the drug-target complex (2.08 h(-1)). These mechanistic analyses enabled linking of exposure, target (TrkB) coverage, and pharmacological activity (e.g., PD) in monkeys, and indicated that ≥ 38% target coverage (time-average) was required to achieve significant body weight gain in monkeys. Based on the scaling of the TMDD model from monkeys to humans and assuming similar relationship between the target coverage and pharmacological activity between monkey and humans, subcutaneous (SC) doses of 1 and 15 mg/kg in humans were projected to be the minimally and the fully pharmacologically active doses, respectively. Based on the minimal anticipated biological effect level (MABEL) approach for starting dose selection, the dose of 0.05 mg/kg (3 mg for a 60 kg human) SC was recommended as the starting dose for FIH trials, because at this dose level<10% target coverage was projected at Cmax (and all other time points). This study illustrates a rational mechanistic approach for the selection of FIH dose range for a therapeutic protein with a complex model of action.


Assuntos
Fármacos Antiobesidade/farmacologia , Anticorpos Monoclonais/farmacologia , Caquexia/terapia , Simulação por Computador , Imunoterapia/métodos , Obesidade/terapia , Receptores Proteína Tirosina Quinases/agonistas , Animais , Fármacos Antiobesidade/administração & dosagem , Fármacos Antiobesidade/efeitos adversos , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Peso Corporal/efeitos dos fármacos , Células CHO , Ensaios Clínicos como Assunto , Cricetulus , Relação Dose-Resposta a Droga , Cálculos da Dosagem de Medicamento , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Macaca fascicularis , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Especificidade da Espécie
11.
ACS Med Chem Lett ; 4(1): 118-23, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24900572

RESUMO

11ß-Hydroxysteroid dehydrogenase type 1 (11ß-HSD1) catalyzes the conversion of inactive glucocorticoid cortisone to its active form, cortisol. The glucocorticoid receptor (GR) signaling pathway has been linked to the pathophysiology of diabetes and metabolic syndrome. Herein, the structure-activity relationship of a series of piperazine sulfonamide-based 11ß-HSD1 inhibitors is described. (R)-3,3,3-Trifluoro-2-(5-(((R)-4-(4-fluoro-2-(trifluoromethyl)phenyl)-2-methylpiperazin-1-yl)sulfonyl)thiophen-2-yl)-2-hydroxypropanamide 18a (HSD-621) was identified as a potent and selective 11ß-HSD1 inhibitor and was ultimately selected as a clinical development candidate. HSD-621 has an attractive overall pharmaceutical profile and demonstrates good oral bioavailability in mouse, rat, and dog. When orally dosed in C57/BL6 diet-induced obesity (DIO) mice, HSD-621 was efficacious and showed a significant reduction in both fed and fasting glucose and insulin levels. Furthermore, HSD-621 was well tolerated in drug safety assessment studies.

12.
Endocrinology ; 153(9): 4290-303, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22753645

RESUMO

Coiled-coil domain containing 80 (Ccdc80) is a secreted protein highly enriched in mouse and human white adipose tissue (WAT) that plays an important role during adipocyte differentiation in vitro. To investigate the physiological function of Ccdc80 in energy and glucose homeostasis, we generated mice in which the gene encoding Ccdc80 was disrupted. Mice lacking Ccdc80 showed increased sensitivity to diet-induced hyperglycemia and glucose intolerance while displaying reduced glucose-stimulated insulin secretion in vivo. Gene expression analysis by microarray revealed that only 10 transcripts were simultaneously altered in pancreas, skeletal muscle, and WAT from Ccdc80(-/-) mice, including some components of the circadian clock. Expression of the core clock member Arntl/Bmal1 was reduced whereas that of the oscillating transcription factors Dbp and Tef was increased in all tissues examined. Furthermore, knockdown of Ccdc80 in 3T3-L1 cells led to an increase of Dbp mRNA levels during adipocyte differentiation, suggesting that Ccdc80 might be involved in the regulation of this gene in a cell-autonomous manner. Importantly, transcriptional alterations in Ccdc80(-/-) mice were associated with changes in feeding behavior, increased caloric intake, decreased energy expenditure, and obesity. Taken together, our results suggest that Ccdc80 is a novel modulator of glucose and energy homeostasis during diet-induced obesity.


Assuntos
Glucose/metabolismo , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Obesidade/metabolismo , Células 3T3-L1 , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas da Matriz Extracelular , Glicoproteínas/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Obesos , Músculo Esquelético/metabolismo , Obesidade/genética , Pâncreas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
J Biol Chem ; 286(48): 41838-41851, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21990351

RESUMO

Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is one of two known DGAT enzymes that catalyze the final step in triglyceride synthesis. Findings from genetically modified mice as well as pharmacological studies suggest that inhibition of DGAT1 is a promising strategy for the treatment of obesity and type 2 diabetes. Here we characterize a tool DGAT1 inhibitor compound, T863. We found that T863 is a potent inhibitor for both human and mouse DGAT1 in vitro, which acts on the acyl-CoA binding site of DGAT1 and inhibits DGAT1-mediated triacylglycerol formation in cells. In an acute lipid challenge model, oral administration of T863 significantly delayed fat absorption and resulted in lipid accumulation in the distal small intestine of mice, mimicking the effects of genetic ablation of DGAT1. In diet-induced obese mice, oral administration of T863 for 2 weeks caused weight loss, reduction in serum and liver triglycerides, and improved insulin sensitivity. In addition to the expected triglyceride-lowering activity, T863 also lowered serum cholesterol. Hepatic IRS2 protein was dramatically up-regulated in mice treated with T863, possibly contributing to improved insulin sensitivity. In differentiated 3T3-L1 adipocytes, T863 enhanced insulin-stimulated glucose uptake, suggesting a possible role for adipocytes to improve insulin sensitivity upon DGAT1 inhibition. These results reveal novel mechanistic insights into the insulin-sensitizing effects of DGAT1 inhibition in mouse models. Taken together, our study provides a comprehensive evaluation of a small molecule inhibitor for DGAT1 and suggests that pharmacological inhibition of DGAT1 holds promise in treating diverse metabolic disorders.


Assuntos
Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Resistência à Insulina , Fígado/enzimologia , Redução de Peso/efeitos dos fármacos , Células 3T3-L1 , Administração Oral , Animais , Sítios de Ligação , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacocinética , Humanos , Camundongos , Camundongos Obesos , Triglicerídeos/sangue
14.
PLoS One ; 5(12): e15912, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21206533

RESUMO

BACKGROUND: It is believed that the endotoxin lipopolysaccharide (LPS) is implicated in the metabolic perturbations associated with both sepsis and obesity (metabolic endotoxemia). Here we examined the role of inducible nitric oxide synthase (iNOS) in skeletal muscle insulin resistance using LPS challenge in rats and mice as in vivo models of endotoxemia. METHODOLOGY/PRINCIPAL FINDINGS: Pharmacological (aminoguanidine) and genetic strategies (iNOS⁻/⁻ mice) were used to counter iNOS induction in vivo. In vitro studies using peroxynitrite (ONOO⁻) or inhibitors of the iNOS pathway, 1400 W and EGCG were conducted in L6 myocytes to determine the mechanism by which iNOS mediates LPS-dependent insulin resistance. In vivo, both pharmacological and genetic invalidation of iNOS prevented LPS-induced muscle insulin resistance. Inhibition of iNOS also prevented insulin resistance in myocytes exposed to cytokine/LPS while exposure of myocytes to ONOO⁻ fully reproduced the inhibitory effect of cytokine/LPS on both insulin-stimulated glucose uptake and PI3K activity. Importantly, LPS treatment in vivo and iNOS induction and ONOO⁻ treatment in vitro promoted tyrosine nitration of IRS-1 and reduced insulin-dependent tyrosine phosphorylation. CONCLUSIONS/SIGNIFICANCE: Our work demonstrates that iNOS-mediated tyrosine nitration of IRS-1 is a key mechanism of skeletal muscle insulin resistance in endotoxemia, and presents nitrosative modification of insulin signaling proteins as a novel therapeutic target for combating muscle insulin resistance in inflammatory settings.


Assuntos
Endotoxemia/metabolismo , Endotoxinas/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Nitrogênio/química , Ácido Peroxinitroso/química , Tirosina/química , Animais , Camundongos , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Sepse/metabolismo , Transdução de Sinais
15.
J Med Chem ; 52(17): 5449-61, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19673466

RESUMO

Cortisol and the glucocorticoid receptor signaling pathway have been implicated in the development of diabetes and obesity. The reduction of cortisone to cortisol is catalyzed by 11beta-hydroxysteroid dehydrogenase type I (11beta-HSD1). 2,4-Disubsituted benzenesulfonamides were identified as potent inhibitors of both the human and mouse enzymes. The lead compounds displayed good pharmacokinetics and ex vivo inhibition of the target in mice. Cocrystal structures of compounds 1 and 20 bound to human 11beta-HSD1 were obtained. Compound 20 was found to achieve high concentrations in target tissues, resulting in 95% inhibition in the ex vivo assay when dosed with a food mix (0.5 mg of drug per g of food) after 4 days. Compound 20 was efficacious in a mouse diet-induced obesity model and significantly reduced fed glucose and fasted insulin levels. Our findings suggest that 11beta-HSD1 inhibition may be a valid target for the treatment of diabetes.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Dieta/efeitos adversos , Inibidores Enzimáticos/farmacologia , Obesidade/enzimologia , Obesidade/etiologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , Animais , Células CHO , Cricetinae , Cricetulus , Cristalografia por Raios X , Modelos Animais de Doenças , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/uso terapêutico , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Conformação Molecular , Obesidade/tratamento farmacológico , Relação Estrutura-Atividade
16.
Endocrinology ; 150(6): 2586-95, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19213841

RESUMO

GPR39 is a G protein-coupled receptor expressed in liver, gastrointestinal tract, adipose tissue, and pancreas. We have recently shown that young GPR39(-/-) mice have normal body weight, food intake, and fasting glucose and insulin levels. In this study, we examined the role of GPR39 in aging and diet-induced obese mice. Body weight and food intake were similar in wild-type and GPR39(-/-) mice as they aged from 12 to 52 wk or when fed a low-fat/high-sucrose or high-fat/high-sucrose diet. Fifty-two-week-old GPR39(-/-) mice showed a trend toward decreased insulin levels after oral glucose challenge. When fed either a low-fat/high-sucrose or high-fat/high-sucrose diet, GPR39(-/-) mice had increased fed glucose levels and showed decreased serum insulin levels during an oral glucose tolerance test in the face of unchanged insulin tolerance. Pancreas morphology and glucose-stimulated insulin secretion in isolated islets from wild-type and GPR39(-/-) mice were comparable, suggesting that GPR39 is not required for pancreas development or ex vivo insulin secretion. Small interfering RNA-mediated knockdown of GPR39 in clonal NIT-1 beta-cells revealed that GPR39 regulates the expression of insulin receptor substrate-2 and pancreatic and duodenal homeobox-1 in a cell-autonomous manner; insulin receptor substrate-2 mRNA was also significantly decreased in the pancreas of GPR39(-/-) mice. Taken together, our data indicate that GPR39 is required for the increased insulin secretion in vivo under conditions of increased demand, i.e. on development of age-dependent and diet-induced insulin resistance. Thus, GPR39 agonists may have potential for the treatment of type 2 diabetes.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Envelhecimento/metabolismo , Animais , Células Cultivadas , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Inativação Gênica/fisiologia , Glucose/metabolismo , Glucose/farmacologia , Proteínas de Homeodomínio/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Interferência de RNA/fisiologia , Transativadores/metabolismo
17.
Proc Natl Acad Sci U S A ; 106(1): 262-7, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19116277

RESUMO

In a search for more effective anti-diabetic treatment, we used a process coupling low-affinity biochemical screening with high-throughput co-crystallography in the design of a series of compounds that selectively modulate the activities of all three peroxisome proliferator-activated receptors (PPARs), PPARalpha, PPARgamma, and PPARdelta. Transcriptional transactivation assays were used to select compounds from this chemical series with a bias toward partial agonism toward PPARgamma, to circumvent the clinically observed side effects of full PPARgamma agonists. Co-crystallographic characterization of the lead molecule, indeglitazar, in complex with each of the 3 PPARs revealed the structural basis for its PPAR pan-activity and its partial agonistic response toward PPARgamma. Compared with full PPARgamma-agonists, indeglitazar is less potent in promoting adipocyte differentiation and only partially effective in stimulating adiponectin gene expression. Evaluation of the compound in vivo confirmed the reduced adiponectin response in animal models of obesity and diabetes while revealing strong beneficial effects on glucose, triglycerides, cholesterol, body weight, and other metabolic parameters. Indeglitazar has now progressed to Phase II clinical evaluations for Type 2 diabetes mellitus (T2DM).


Assuntos
Descoberta de Drogas/métodos , Hipoglicemiantes/uso terapêutico , PPAR gama/agonistas , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Adipócitos/citologia , Adiponectina/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Diabetes Mellitus Experimental/tratamento farmacológico , Humanos , Hipoglicemiantes/farmacologia , Camundongos , Obesidade/tratamento farmacológico , PPAR gama/genética , Receptores Ativados por Proliferador de Peroxissomo/genética , Ratos , Ativação Transcricional/efeitos dos fármacos
18.
PPAR Res ; 2008: 125387, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18989368

RESUMO

The prevalence of obesity in the USA and worldwide has reached epidemic proportions during the last two decades. Drugs currently available for the treatment of obesity provide no more than 5% placebo-adjusted weight loss and are associated with undesirable side effects. Peroxisome proliferator-activated receptor (PPAR) modulators offer potential benefits for the treatment of obesity and its associated complications but their development has been complicated by biological, technical, and regulatory challenges. Despite significant challenges, PPAR modulators are attractive targets for the treatment of obesity and could offer a viable alternative to the millions of patients who fail to lose weight following rigorous dieting and exercise protocols. In addition, PPAR modulators have the potential-added benefit of ameliorating the associated comorbidities.

19.
Endocrinology ; 148(2): 501-6, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17095592

RESUMO

It has been recently proposed that obestatin, a peptide encoded by the ghrelin gene, reduces food intake by activating the orphan G protein-coupled receptor GPR39. To gain further insights into the role of GPR39 in body weight homeostasis, we characterized the phenotype of mice with targeted disruption of the GPR39 gene. Body weight, adiposity, and food intake were found to be similar between GPR39(+/+) and GPR39(-/-) mice. Furthermore, fasting glucose and insulin levels were similar between both genotypes. Injection of obestatin peptide (1 micromol/kg, ip) obtained from multiple sources did not consistently inhibit food intake in wild-type mice after an overnight fast, and no difference in food intake was observed between wild-type and GPR39 knockout mice after injection of the peptide. Finally, ectopic expression of GPR39 in HEK293T cells revealed a constitutive activation of the receptor that was unaffected by stimulation with obestatin. Our phenotypic characterization suggests that GPR39 is not a major modulator of food intake in mice, although a more subtle role cannot be excluded. The role of GPR39 in normal physiology requires further study and should be conducted independently of the function of obestatin.


Assuntos
Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Homeostase/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Linhagem Celular , Ingestão de Alimentos/efeitos dos fármacos , Grelina , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/farmacologia , Fenótipo , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/metabolismo , Transfecção
20.
Vascul Pharmacol ; 45(3): 154-62, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16765099

RESUMO

OBJECTIVE AND DESIGN: Elevated blood pressure and insulin resistance are strongly associated in patients. We explored the potential for the anti-hypertensive angiotensin II type 1-receptor (ATR(1)) antagonists to improve insulin sensitivity through modulation of the nuclear receptor PPARgamma, in vitro and in vivo compared to the potent insulin sensitizer, rosiglitazone. METHODS: PPARgamma modulation by ATR(1) antagonists was measured first by direct recruitment of PGC-1, followed by trans-activation reporter assays in cells, and promotion of adipogenesis in fibroblast and pre-adipocyte cell lines. Improvement of insulin sensitivity was measured as changes in levels of glucose, insulin, and adiponectin in ob/ob mice. RESULTS: Telmisartan, candesartan, irbesartan, and losartan (but not valsartan or olmesartan) each served as bona fide PPARgamma ligands in vitro, with EC(50) values between 3 and 5 micro mol/l. However, only telmisartan, and to a lesser extent candesartan, resulted in significant PPARgamma agonism in cells. In vivo, although rosiglitazone significantly lowered both glucose (33%, p<0.01) and insulin (61%, p<0.01) levels and increased expression of adiponectin (74%, p<0.001), sartan treatment had no effect. CONCLUSIONS: Many members of the sartan family of ATR(1) antagonists are PPARgamma ligands in cell-free assays but their modulation of PPARgamma in cells is relatively weak. Furthermore, none appear to improve insulin sensitivity in a rodent model under conditions where other insulin sensitizers, including rosiglitazone, do. These results question whether reported effects of sartans on insulin sensitivity may be through other means, and should guide further efforts to develop dual agents to treat hypertension and insulin resistance.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Hipoglicemiantes/farmacologia , Resistência à Insulina , PPAR gama/agonistas , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Adiponectina/sangue , Bloqueadores do Receptor Tipo 1 de Angiotensina II/química , Animais , Glicemia/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Hipoglicemiantes/química , Insulina/sangue , Masculino , Camundongos , Camundongos Obesos , Obesidade/sangue , Obesidade/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Recombinantes/agonistas , Rosiglitazona , Relação Estrutura-Atividade , Tiazolidinedionas/farmacologia , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...