Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 105(5): 597-608, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20376467

RESUMO

Beta-catenin is a component of the intercalated disc in cardiomyocytes, but can also be involved in signalling and activation of gene transcription. We wanted to determine how long-term changes in beta-catenin expression levels would affect mature cardiomyocytes. Conditional transgenic mice that either lacked beta-catenin or that expressed a non-degradable form of beta-catenin in the adult ventricle were created. While mice lacking beta-catenin in the ventricle do not have an overt phenotype, mice expressing a non-degradable form develop dilated cardiomyopathy and do not survive beyond 5 months. A detailed analysis could reveal that this phenotype is correlated with a distinct localisation of beta-catenin in adult cardiomyocytes, which cannot be detected in the nucleus, no matter how much protein is present. Our report is the first study that addresses long-term effects of either the absence of beta-catenin or its stabilisation on ventricular cardiomyocytes and it suggests that beta-catenin's role in the nucleus may be of little significance in the healthy adult heart.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/fisiopatologia , Miócitos Cardíacos/fisiologia , beta Catenina/genética , beta Catenina/metabolismo , Animais , Cardiomiopatia Dilatada/mortalidade , Fracionamento Celular , Linhagem Celular , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Técnicas de Introdução de Genes/métodos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Integrases/genética , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , Fenótipo , Ratos , Transdução de Sinais/fisiologia , Taxa de Sobrevida , Transcrição Gênica/fisiologia , Proteínas Wnt/metabolismo
2.
Cell Metab ; 9(6): 512-24, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19490906

RESUMO

Development of cardiac hypertrophy and progression to heart failure entails profound changes in myocardial metabolism, characterized by a switch from fatty acid utilization to glycolysis and lipid accumulation. We report that hypoxia-inducible factor (HIF)1alpha and PPARgamma, key mediators of glycolysis and lipid anabolism, respectively, are jointly upregulated in hypertrophic cardiomyopathy and cooperate to mediate key changes in cardiac metabolism. In response to pathologic stress, HIF1alpha activates glycolytic genes and PPARgamma, whose product, in turn, activates fatty acid uptake and glycerolipid biosynthesis genes. These changes result in increased glycolytic flux and glucose-to-lipid conversion via the glycerol-3-phosphate pathway, apoptosis, and contractile dysfunction. Ventricular deletion of Hif1alpha in mice prevents hypertrophy-induced PPARgamma activation, the consequent metabolic reprogramming, and contractile dysfunction. We propose a model in which activation of the HIF1alpha-PPARgamma axis by pathologic stress underlies key changes in cell metabolism that are characteristic of and contribute to common forms of heart disease.


Assuntos
Cardiomegalia/metabolismo , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metabolismo dos Lipídeos , PPAR gama/metabolismo , Animais , Apoptose , Ácidos Graxos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , PPAR gama/genética , Monoéster Fosfórico Hidrolases/metabolismo , Regulação para Cima , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
3.
Circ Res ; 103(10): 1139-46, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18849322

RESUMO

Development of the mammalian heart is governed by precisely orchestrated interactions between signaling pathways integrating environmental cues and a core cardiac transcriptional network that directs differentiation, growth and morphogenesis. Here we report that in mice, at about embryonic day (E)8.5 to E10.0, cardiac development proceeds in an environment that is hypoxic and characterized by high levels of hypoxia-inducible factor (HIF)1alpha protein. Mice lacking HIF1alpha in ventricular cardiomyocytes exhibit aborted development at looping morphogenesis and embryonic lethality between E11.0 to E12.0. Intriguingly, HIF1alpha-deficient hearts display reduced expression of the core cardiac transcription factors Mef2C and Tbx5 and of titin, a giant protein that serves as a template for the assembly and organization of the sarcomere. Chromatin immunoprecipitation experiments revealed that Mef2C, Tbx5, and titin are direct target genes of HIF1alpha in vivo. Thus, hypoxia signaling controls cardiac development through HIF1alpha-mediated transcriptional regulation of key components of myofibrillogenesis and the cardiac transcription factor network, thereby providing a mechanistic basis of how heart development, morphogenesis, and function is coupled to low oxygen tension during early embryogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Animais , Conectina , Perda do Embrião/genética , Perda do Embrião/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fatores de Transcrição MEF2 , Camundongos , Camundongos Transgênicos , Proteínas Musculares/biossíntese , Proteínas Musculares/genética , Fatores de Regulação Miogênica/biossíntese , Fatores de Regulação Miogênica/genética , Proteínas Quinases/biossíntese , Proteínas Quinases/genética , Sarcômeros/genética , Sarcômeros/metabolismo , Transdução de Sinais/genética , Proteínas com Domínio T/biossíntese , Proteínas com Domínio T/genética
4.
Exp Cell Res ; 313(6): 1270-83, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17316608

RESUMO

Cardiomyocytes stop dividing after birth and postnatal heart growth is only achieved by increase in cell volume. In some species, cardiomyocytes undergo an additional incomplete mitosis in the first postnatal week, where karyokinesis takes place in the absence of cytokinesis, leading to binucleation. Proteins that regulate the formation of the actomyosin ring are known to be important for cytokinesis. Here we demonstrate for the first time that small GTPases like RhoA along with their downstream effectors like ROCK I, ROCK II and Citron Kinase show a developmental stage specific expression in heart, with high levels being expressed in cardiomyocytes only at stages when cytokinesis still occurs (i.e. embryonic and perinatal). This suggests that downregulation of many regulatory and cytoskeletal components involved in the formation of the actomyosin ring may be responsible for the uncoupling of cytokinesis from karyokinesis in rodent cardiomyocytes after birth. Interestingly, when the myocardium tries to adapt to the increased workload during pathological hypertrophy a re-expression of proteins involved in DNA synthesis and cytokinesis can be detected. Nevertheless, the adult cardiomyocytes do not appear to divide despite this upregulation of the cytokinetic machinery. The inability to undergo complete division could be due to the presence of stable, highly ordered and functional sarcomeres in the adult myocardium or could be because of the inefficiency of degradation pathways, which facilitate the division of differentiated embryonic cardiomyocytes by disintegrating myofibrils.


Assuntos
Cardiomegalia/metabolismo , Divisão do Núcleo Celular , Citocinese , Coração/embriologia , Miócitos Cardíacos/fisiologia , Actomiosina/metabolismo , Amidas/farmacologia , Angiotensina II/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Biomarcadores/análise , Calpaína/metabolismo , Cardiomegalia/induzido quimicamente , Proteínas Culina/metabolismo , Coração/crescimento & desenvolvimento , Hipertensão/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Piridinas/farmacologia , Ratos , Ratos Endogâmicos Dahl , Regulação para Cima , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho
5.
Exp Cell Res ; 312(9): 1598-609, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16739252

RESUMO

Heart growth in the embryo is achieved by division of differentiated cardiomyocytes. Around birth, cardiomyocytes stop dividing and heart growth occurs only by volume increase of the individual cells. Cardiomyocytes seem to lose their capacity for cytokinesis at this developmental stage. Septins are GTP-binding proteins that have been shown to be involved in cytokinesis from yeast to vertebrates. We wanted to determine whether septin expression patterns can be correlated to the cessation of cytokinesis during heart development. We found significant levels of expression only for SEPT2, SEPT6, SEPT7 and SEPT9 in heart, in a developmentally regulated fashion, with high levels in the embryonic heart, downregulation around birth and no detectable expression in the adult. In dividing embryonic cardiomyocytes, all septins localize to the cleavage furrow. We used drugs to probe for the functional interactions of SEPT2 in dividing embryonic cardiomyocytes. Differences in the effects on subcellular septin localization in cardiomyocytes were observed, depending whether a Rho kinase (ROCK) inhibitor was used or whether actin and myosin were targeted directly. Our data show a tight correlation of high levels of septin expression and the ability to undergo cytokinesis in cardiomyocytes. In addition, we were able to dissect the different contributions of ROCK signaling and the actomyosin cytoskeleton to septin localization to the contractile ring using cardiomyocytes as an experimental system.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Miócitos Cardíacos/metabolismo , Actinina/análise , Actinina/metabolismo , Amidas/farmacologia , Animais , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Citocalasina D/farmacologia , Citocinese/efeitos dos fármacos , Citocinese/fisiologia , Proteínas do Citoesqueleto/análise , Proteínas do Citoesqueleto/metabolismo , Inibidores Enzimáticos/farmacologia , GTP Fosfo-Hidrolases/análise , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/análise , Proteínas de Ligação ao GTP/metabolismo , Coração/embriologia , Coração/crescimento & desenvolvimento , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Camundongos , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Biológicos , Miocárdio/química , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miosina não Muscular Tipo IIB/análise , Miosina não Muscular Tipo IIB/metabolismo , Piridinas/farmacologia , Ratos , Proteínas de Schizosaccharomyces pombe , Septinas , Fuso Acromático/química , Fuso Acromático/metabolismo , Fatores de Tempo , Fatores de Transcrição
6.
J Cell Sci ; 117(Pt 15): 3295-306, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15226401

RESUMO

The contractile tissue of the heart is composed of individual cardiomyocytes. During mammalian embryonic development, heart growth is achieved by cell division while at the same time the heart is already exerting its essential pumping activity. There is still some debate whether the proliferative activity is carried out by a less differentiated, stem cell-like type of cardiomyocytes or whether embryonic cardiomyocytes are able to perform both of these completely different dynamic tasks, contraction and cell division. Our analysis of triple-stained specimen of cultured embryonic cardiomyocytes and of whole mount preparations of embryonic mouse hearts by confocal microscopy revealed that differentiated cardiomyocytes are indeed able to proliferate. However, to go through cell division, a disassembly of the contractile elements, the myofibrils, has to take place. This disassembly occurs in two steps with Z-disk and thin (actin)-filament-associated proteins getting disassembled before disassembly of the M-bands and the thick (myosin) filaments happens. After cytokinesis reassembly of the myofibrillar proteins to their mature cross-striated pattern can be seen. Another interesting observation was that the cell-cell contacts remain seemingly intact during division, probably reflecting the requirement of intact integration sites of the individual cells in the contractile tissue. Our results suggest that embryonic cardiomyocytes have developed an interesting strategy to deal with their major cytoskeletal elements, the myofibrils, during mitosis. The complex disassembly-reassembly process might also provide a mechanistic explanation, why cardiomyocytes cede to divide postnatally.


Assuntos
Mitose , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Actinina/metabolismo , Actinas/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Citocinese , Citoesqueleto/metabolismo , Coração/embriologia , Camundongos , Microscopia Confocal , Contração Muscular , Ratos , Sarcômeros/metabolismo , Retículo Sarcoplasmático/metabolismo , Fatores de Tempo , Regulação para Cima
7.
J Cell Sci ; 115(Pt 24): 4925-36, 2002 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-12432079

RESUMO

During sarcomere contraction skeletal and cardiac muscle cells consume large amounts of energy. To satisfy this demand, metabolic enzymes are associated with distinct regions of the sarcomeres in the I-band and in the M-band, where they help to maintain high local concentrations of ATP. To date, the mechanism by which metabolic enzymes are coupled to the sarcomere has not been elucidated. Here, we show that the four and a half LIM-only protein DRAL/FHL-2 mediates targeting of the metabolic enzymes creatine kinase, adenylate kinase and phosphofructokinase by interaction with the elastic filament protein titin in cardiomyocytes. Using yeast two-hybrid assays, colocalisation experiments, co-immunoprecipitation and protein pull-down assays, we show that DRAL/FHL-2 is bound to two distinct sites on titin. One binding site is situated in the N2B region, a cardiac-specific insertion in the I-band part of titin, and the other is located in the is2 region of M-band titin. We also show that DRAL/FHL-2 binds to the metabolic enzymes creatine kinase, adenylate kinase and phosphofructokinase and might target these enzymes to the N2B and is2 regions in titin. We propose that DRAL/FHL-2 acts as a specific adaptor protein to couple metabolic enzymes to sites of high energy consumption in the cardiac sarcomere.


Assuntos
Proteínas de Homeodomínio/metabolismo , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Proteínas Quinases/metabolismo , Frações Subcelulares/enzimologia , Fatores de Transcrição/metabolismo , Adenilato Quinase/metabolismo , Animais , Conectina , Creatina Quinase/metabolismo , Imunofluorescência , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas com Homeodomínio LIM , Proteínas Musculares/genética , Fosfofrutoquinases/metabolismo , Ligação Proteica , Ratos , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...