Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 33(4): 108321, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33113367

RESUMO

The tumor suppressor p53 regulates multiple metabolic pathways at the cellular level. However, its role in the context of a whole animal response to metabolic stress is poorly understood. Using Drosophila, we show that AMP-activated protein kinase (AMPK)-dependent Dmp53 activation is critical for sensing nutrient stress, maintaining metabolic homeostasis, and extending organismal survival. Under both nutrient deprivation and high-sugar diet, Dmp53 activation in the fat body represses expression of the Drosophila Leptin analog, Unpaired-2 (Upd2), which remotely controls Dilp2 secretion in insulin-producing cells. In starved Dmp53-depleted animals, elevated Upd2 expression in adipose cells and activation of Upd2 receptor Domeless in the brain result in sustained Dilp2 circulating levels and impaired autophagy induction at a systemic level, thereby reducing nutrient stress survival. These findings demonstrate an essential role for the AMPK-Dmp53 axis in nutrient stress responses and expand the concept that adipose tissue acts as a sensing organ that orchestrates systemic adaptation to nutrient status.


Assuntos
Autofagia/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Corpo Adiposo
2.
Metallomics ; 12(2): 218-240, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31799578

RESUMO

Manganese is considered essential for animal growth. Manganese ions serve as cofactors to three mitochondrial enzymes: superoxide dismutase (Sod2), arginase and glutamine synthase, and to glycosyltransferases residing in the Golgi. In Drosophila melanogaster, manganese has also been implicated in the formation of ceramide phosphoethanolamine, the insect's sphingomyelin analogue, a structural component of cellular membranes. Manganese overload leads to neurodegeneration and toxicity in both humans and Drosophila. Here, we report specific absorption and accumulation of manganese during the first week of adulthood in flies, which correlates with an increase in Sod2 activity during the same period. To test the requirement of dietary manganese for this accumulation, we generated a Drosophila model of manganese deficiency. Due to the lack of manganese-specific chelators, we used chemically defined media to grow the flies and deplete them of the metal. Dietary manganese depletion reduced Sod2 activity. We then examined gene and protein expression changes in the intestines of manganese depleted flies. We found adaptive responses to the presumed loss of known manganese-dependent enzymatic activities: less glutamine synthase activity (amination of glutamate to glutamine) was compensated by 50% reduction in glutaminase (deamination of glutamine to glutamate); less glycosyltransferase activity, predicted to reduce protein glycosylation, was compensated by 30% reduction in lysosomal mannosidases (protein deglycosylating enzymes); less ceramide phosphoethanolamine synthase activity was compensated by 30% reduction in the Drosophila sphingomyeline phospodiesterase, which could catabolize ceramide phosphoethanolamine in flies. Reduced Sod2 activity, predicted to cause superoxide-dependent iron-sulphur cluster damage, resulted in cellular iron misregulation.


Assuntos
Drosophila melanogaster/fisiologia , Intestinos/fisiologia , Manganês/deficiência , Animais , Dieta , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Íons/metabolismo , Manganês/análise , RNA-Seq , Superóxido Dismutase/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
3.
PLoS Genet ; 12(5): e1006073, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27223464

RESUMO

Cellular and systemic responses to low oxygen levels are principally mediated by Hypoxia Inducible Factors (HIFs), a family of evolutionary conserved heterodimeric transcription factors, whose alpha- and beta-subunits belong to the bHLH-PAS family. In normoxia, HIFα is hydroxylated by specific prolyl-4-hydroxylases, targeting it for proteasomal degradation, while in hypoxia the activity of these hydroxylases decreases due to low oxygen availability, leading to HIFα accumulation and expression of HIF target genes. To identify microRNAs required for maximal HIF activity, we conducted an overexpression screen in Drosophila melanogaster, evaluating the induction of a HIF transcriptional reporter. miR-190 overexpression enhanced HIF-dependent biological responses, including terminal sprouting of the tracheal system, while in miR-190 loss of function embryos the hypoxic response was impaired. In hypoxic conditions, miR-190 expression was upregulated and required for induction of HIF target genes by directly inhibiting the HIF prolyl-4-hydroxylase Fatiga. Thus, miR-190 is a novel regulator of the hypoxia response that represses the oxygen sensor Fatiga, leading to HIFα stabilization and enhancement of hypoxic responses.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , MicroRNAs/biossíntese , Prolil Hidroxilases/genética , Transcrição Gênica , Animais , Hipóxia Celular/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/genética , Oxigênio/metabolismo , Prolil Hidroxilases/metabolismo
4.
Proc Natl Acad Sci U S A ; 110(25): 10270-5, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23733942

RESUMO

Rotavirus (RV) is the major cause of childhood gastroenteritis worldwide. This study presents a functional genome-scale analysis of cellular proteins and pathways relevant for RV infection using RNAi. Among the 522 proteins selected in the screen for their ability to affect viral infectivity, an enriched group that participates in endocytic processes was identified. Within these proteins, subunits of the vacuolar ATPase, small GTPases, actinin 4, and, of special interest, components of the endosomal sorting complex required for transport (ESCRT) machinery were found. Here we provide evidence for a role of the ESCRT complex in the entry of simian and human RV strains in both monkey and human epithelial cells. In addition, the ESCRT-associated ATPase VPS4A and phospholipid lysobisphosphatidic acid, both crucial for the formation of intralumenal vesicles in multivesicular bodies, were also found to be required for cell entry. Interestingly, it seems that regardless of the molecules that rhesus RV and human RV strains use for cell-surface attachment and the distinct endocytic pathway used, all these viruses converge in early endosomes and use multivesicular bodies for cell entry. Furthermore, the small GTPases RHOA and CDC42, which regulate different types of clathrin-independent endocytosis, as well as early endosomal antigen 1 (EEA1), were found to be involved in this process. This work reports the direct involvement of the ESCRT machinery in the life cycle of a nonenveloped virus and highlights the complex mechanism that these viruses use to enter cells. It also illustrates the efficiency of high-throughput RNAi screenings as genetic tools for comprehensively studying the interaction between viruses and their host cells.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Infecções por Rotavirus/metabolismo , Rotavirus/metabolismo , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/virologia , ATPases Associadas a Diversas Atividades Celulares , Animais , Células CACO-2 , Chlorocebus aethiops , Estudo de Associação Genômica Ampla , Humanos , Transporte Proteico/fisiologia , Interferência de RNA , Infecções por Rotavirus/virologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Células Vero , Proteínas de Transporte Vesicular/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7 , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA