Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 122(16): 4573-4582, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29620905

RESUMO

Whereas it is experimentally known that the inclusion of nanoparticles in hydrogels can lead to a mechanical reinforcement, a detailed molecular understanding of the adhesion mechanism is still lacking. Here we use coarse-grained molecular dynamics simulations to investigate the nature of the interface between silica surfaces and solvated polymers. We show how differences in the nature of the polymer and the polymer-solvent interactions can lead to drastically different behavior of the polymer-surface adhesion. Comparing explicit and implicit solvent models, we conclude that this effect cannot be fully described in an implicit solvent. We highlight the crucial role of polymer solvation for the adsorption of the polymer chain on the silica surface, the significant dynamics of polymer chains on the surface, and details of the modifications in the structure solvated polymer close to the interface.

2.
ACS Nano ; 11(1): 627-634, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28027437

RESUMO

Based on a low-temperature scanning tunneling microscopy study, we present a direct visualization of a cycloaddition reaction performed for some specific fluorinated maleimide molecules deposited on graphene. Up to now, it was widely admitted that such a cycloaddition reaction can not happen without pre-existing defects. However, our study shows that the cycloaddition reaction can be carried out on a defect-free basal graphene plane at room temperature. In the course of covalently grafting the molecules to graphene, the sp2 conjugation of carbon atoms was broken, and local sp3 bonds were created. The grafted molecules perturbed the graphene lattice, generating a standing-wave pattern with an anisotropy which was attributed to a (1,2) cycloaddition, as revealed by T-matrix approximation calculations. DFT calculations showed that while both (1,4) and (1,2) cycloadditions were possible on free-standing graphene, only the (1,2) cycloaddition could be obtained for graphene on SiC(0001). Globally averaging spectroscopic techniques, XPS and ARPES, were used to determine the modification in the elemental composition of the samples induced by the reaction, indicating an opening of an electronic gap in graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...