Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells Dev ; 24(10): 1223-35, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25579056

RESUMO

In vivo, bone marrow-derived multipotent mesenchymal stromal cells (MSC) have been identified at sites of tumors, suggesting that specific signals mobilize and activate MSC to migrate to areas surrounding tumors. The signals and migratory mechanisms that guide MSC are not well understood. Here, we investigated the migration of human MSC induced by conditioned medium of Huh-7 hepatoma cells (Huh-7 CM). Using a transwell migration system, we showed that human MSC migration was increased in the presence of Huh-7 CM. Using a human cytokine antibody array, we detected increased levels of MIP-1δ and MIP-3α in Huh-7 CM. Recombinant chemokines MIP-1δ and MIP-3α induced MSC migration. Anti-MIP-1δ and anti-MIP-3α antibodies added to Huh-7 CM decreased MSC migration, further suggesting that MIP-1δ and MIP-3α were implicated in the Huh-7 CM-induced MSC migration. By real-time polymerase chain reaction, we observed an absence of chemokine receptors CCR2 and CXCR2 and low expression of CCR1, CCR5, and CCR6 in MSC. Expression of these chemokine receptors was not regulated by Huh-7 CM. Furthermore, matrix metalloproteinase 1 (MMP-1) expression was strongly increased in MSC after incubation with Huh-7 CM, suggesting that MSC migration depends on MMP-1 activity. The signaling pathway MAPK/ERK was activated by Huh-7 CM but its inhibition by PD98059 did not impair Huh-7 CM-induced MSC migration. Further, long-term incubation of MSC with MIP-1δ increased α-smooth muscle actin expression, suggesting its implication in the Huh-7 CM-induced evolvement of MSC into myofibroblasts. In conclusion, we report that two inflammatory cytokines, MIP-1δ and MIP-3α, are able to increase MSC migration in vitro. These cytokines might be responsible for migration and evolvement of MSC into myofibroblasts around tumors.


Assuntos
Carcinoma Hepatocelular/metabolismo , Movimento Celular , Quimiocina CCL20/metabolismo , Quimiocinas CC/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Inflamatórias de Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Citocinas/metabolismo , Humanos , Receptores de Quimiocinas/metabolismo
2.
Diabetes ; 53(8): 2034-41, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15277383

RESUMO

We have shown previously that culture of beta-cells on matrix derived from 804G cells and rich in laminin-5 improves their function. The purpose of this study was to investigate whether this matrix protects beta-cells against apoptosis and to elucidate signaling pathways involved. Matrix protected sorted rat beta-cells against apoptosis under standard conditions (11.2 mmol/l glucose, 10% serum), after serum deprivation (1% serum), and in response to interleukin-1beta (IL-1beta; 2 ng/ml), compared with control (poly-L-lysine [pLL]). Caspase-8 activity was reduced in cells cultured on matrix, whereas focal adhesion kinase (FAK), protein kinase B (PKB, or Akt), and extracellular signal-regulated kinase (ERK) phosphorylation was augmented. Treatment (4 h) with an anti-beta1 integrin antibody, with the ERK pathway inhibitor PD98059, and/or with the phosphatidylinositol 3-kinase inhibitor LY294002 augmented cell death on 804G matrix but not on pLL. In long-term assays (48 h), PD98059 but not LY294002 drastically augmented cell death on 804G matrix but did so to a lesser extent on pLL. The protein inhibitor of nuclear factor-kappaB (IkappaBalpha) was overexpressed in cells cultured 18 h on matrix with partial blockade by PD98059. In summary, this study provides evidence for activation of signaling pathways and gene expression by extracellular matrix leading to improved beta-cell survival.


Assuntos
Apoptose/fisiologia , Matriz Extracelular/fisiologia , Ilhotas Pancreáticas/citologia , Animais , Apoptose/efeitos dos fármacos , Caspase 8 , Caspases/metabolismo , Meios de Cultura , Meios de Cultura Livres de Soro , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Interleucina-1/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Polilisina/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...