Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 161(4): 817-32, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25957687

RESUMO

Rod-derived cone viability factor (RdCVF) is an inactive thioredoxin secreted by rod photoreceptors that protects cones from degeneration. Because the secondary loss of cones in retinitis pigmentosa (RP) leads to blindness, the administration of RdCVF is a promising therapy for this untreatable neurodegenerative disease. Here, we investigated the mechanism underlying the protective role of RdCVF in RP. We show that RdCVF acts through binding to Basigin-1 (BSG1), a transmembrane protein expressed specifically by photoreceptors. BSG1 binds to the glucose transporter GLUT1, resulting in increased glucose entry into cones. Increased glucose promotes cone survival by stimulation of aerobic glycolysis. Moreover, a missense mutation of RdCVF results in its inability to bind to BSG1, stimulate glucose uptake, and prevent secondary cone death in a model of RP. Our data uncover an entirely novel mechanism of neuroprotection through the stimulation of glucose metabolism.


Assuntos
Proteínas do Olho/metabolismo , Glicólise , Tiorredoxinas/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Basigina/genética , Basigina/metabolismo , Proteínas do Olho/genética , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Humanos , Camundongos , Mutação de Sentido Incorreto , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Retinose Pigmentar/metabolismo , Tiorredoxinas/genética
2.
Mol Cell Proteomics ; 8(6): 1206-18, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19279044

RESUMO

Rod-derived cone viability factor (RdCVF) is produced by the Nxnl1 gene that codes for a second polypeptide, RdCVFL, by alternative splicing. Although the role of RdCVF in promoting cone survival has been described, the implication of RdCVFL, a putative thioredoxin enzyme, in the protection of photoreceptors is presently unknown. Using a proteomics approach we identified 90 proteins interacting with RdCVFL including the microtubule-binding protein TAU. We demonstrate that the level of phosphorylation of TAU is increased in the retina of the Nxnl1(-/-) mice as it is hyperphosphorylated in the brain of patients suffering from Alzheimer disease, presumably in some cases through oxidative stress. Using a cell-based assay, we show that RdCVFL inhibits TAU phosphorylation. In vitro, RdCVFL protects TAU from oxidative damage. Photooxidative stress is implicated in retinal degeneration, particularly in retinitis pigmentosa, where it is considered to be a contributor to secondary cone death. The functional interaction between RdCVFL and TAU described here is the first characterization of the RdCVFL signaling pathway involved in neuronal cell death mediated by oxidative stress.


Assuntos
Proteínas do Olho/metabolismo , Retina/metabolismo , Tiorredoxinas/metabolismo , Proteínas tau/metabolismo , Animais , Linhagem Celular , Cromatografia Líquida , Proteínas do Olho/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Estresse Oxidativo , Fosforilação , Ligação Proteica , Isoformas de Proteínas/metabolismo , Espectrometria de Massas em Tandem , Tiorredoxinas/genética
3.
J Biol Chem ; 281(51): 38981-8, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17046828

RESUMO

Lipid transfer proteins (LTPs) are ubiquitous plant lipid-binding proteins that have been associated with multiple developmental and stress responses. Although LTPs typically bind fatty acids and fatty acid derivatives in a non-covalent way, studies on the LTPs of barley seeds have identified an abundantly occurring covalently modified form, LTP1b, the lipid ligand of which has resisted clarification. In the present study, this adduct was identified as the alpha-ketol 9-hydroxy-10-oxo-12(Z)-octadecenoic acid. Further studies on the formation of LTP1b demonstrated that the ligand was introduced by nucleophilic attack of the free carboxylate group of the Asp-7 residue of the protein at carbon-9 of the allene oxide fatty acid 9(S),10-epoxy-10,12(Z)-octadecadienoic acid. This reactive oxylipin was produced in barley seeds by oxygenation of linoleic acid by 9-lipoxygenase followed by dehydration of the resulting hydroperoxide by allene oxide synthase. The generation of protein-oxylipin adducts represents a new function for plant allene oxide synthases, enzymes that have earlier been implicated mainly in the biosynthesis of the jasmonate family of plant hormones. Additionally, the LTP-allene oxide synthase interaction opens new perspectives regarding the roles of LTPs in the signaling of plant defense and development.


Assuntos
Proteínas de Transporte/química , Oxirredutases Intramoleculares/química , Lipoxigenase/química , Animais , Cromatografia Gasosa-Espectrometria de Massas , Hordeum , Hibridomas/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Modelos Químicos , Modelos Moleculares , Especificidade por Substrato , Fatores de Tempo
4.
J Agric Food Chem ; 54(8): 3108-13, 2006 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-16608238

RESUMO

Barley lipid transfer protein (LTP1) is a heat-stable and protease-resistant albumin that concentrates in beer, where it participates in the formation and stability of beer foam. Whereas the barley LTP1 does not display any foaming properties, the corresponding beer protein is surface-active. Such an improvement is related to glycation by Maillard reactions on malting, acylation on mashing, and structural unfolding on brewing. The structural stability of purified barley and glycated malt LTP1 toward heating has been analyzed. Whatever the modification, lipid adduction or glycation, barley LTP1s are highly stable proteins that resisted temperatures up to 100 degrees C. Unfolding of LTP1 occurred only when heating was conducted in the presence of a reducing agent. In the presence of sodium sulfite, the lipid-adducted barley and malt LTP1 displayed higher heat stability than the nonadducted protein. Glycation had no or weak effect on heat-induced unfolding. Finally, it was shown that unfolding occurred on wort boiling before fermentation and that the reducing conditions are provided by malt extract.


Assuntos
Cerveja/análise , Proteínas de Transporte/química , Grão Comestível/química , Hordeum/química , Temperatura Alta , Substâncias Redutoras/farmacologia , Estabilidade de Medicamentos , Proteínas de Ligação a Ácido Graxo , Manipulação de Alimentos/métodos , Glicosilação , Reação de Maillard
5.
Proteomics ; 5(11): 2849-58, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15986330

RESUMO

Proteins determine the quality of barley in malting and brewing end-uses. In this regard, water-soluble barley proteins play a major role in the formation, stability, and texture of head foams. Our objective was to survey the barley seed proteins that could be involved in the foaming properties of beer. Therefore, two-dimensional (2-D) electrophoresis and mass spectrometry were combined to highlight the barley proteins that could resist the heating treatments occurring during malting and brewing processes. As expected, from barley to malt and to beer, most of the heat-stable proteins are disulfide-rich proteins, implicated in the defense of plants against their bio-aggressors, e.g., serpin-like chymotrypsin inhibitors (protein Z), amylase and amylase-protease inhibitors, and lipid transfer proteins (LTP1 and LTP2). For LTP1s, the complex pattern displayed in 2-D electrophoresis could be related to some chemical modifications already described elsewhere, such as acylation or glycation through Maillard reactions, which occur on malting. Our proteomics approach allowed the identification of the numerous proteins present in beer in addition to the major ones already described. The involvement of these proteins in the quality of beer foam can now be evaluated.


Assuntos
Cerveja/análise , Grão Comestível/química , Hordeum/química , Proteínas de Plantas/isolamento & purificação , Western Blotting , Proteínas de Transporte/isolamento & purificação , Eletroforese em Gel Bidimensional , Proteínas de Ligação a Ácido Graxo , Espectrometria de Massas , Desnaturação Proteica , Inibidores da Tripsina/isolamento & purificação , alfa-Amilases/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...