Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Front Psychiatry ; 15: 1384298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827440

RESUMO

Anxiety and depression in children and adolescents warrant special attention as a public health concern given their devastating and long-term effects on development and mental health. Multiple factors, ranging from genetic vulnerabilities to environmental stressors, influence the risk for the disorders. This study aimed to understand how environmental factors and genomics affect children and adolescents anxiety and depression across three cohorts: Adolescent Brain and Cognitive Development Study (US, age of 9-10; N=11,875), Consortium on Vulnerability to Externalizing Disorders and Addictions (INDIA, age of 6-17; N=4,326) and IMAGEN (EUROPE, age of 14; N=1888). We performed data harmonization and identified the environmental impact on anxiety/depression using a linear mixed-effect model, recursive feature elimination regression, and the LASSO regression model. Subsequently, genome-wide association analyses with consideration of significant environmental factors were performed for all three cohorts by mega-analysis and meta-analysis, followed by functional annotations. The results showed that multiple environmental factors contributed to the risk of anxiety and depression during development, where early life stress and school support index had the most significant and consistent impact across all three cohorts. In both meta, and mega-analysis, SNP rs79878474 in chr11p15 emerged as a particularly promising candidate associated with anxiety and depression, despite not reaching genomic significance. Gene set analysis on the common genes mapped from top promising SNPs of both meta and mega analyses found significant enrichment in regions of chr11p15 and chr3q26, in the function of potassium channels and insulin secretion, in particular Kv3, Kir-6.2, SUR potassium channels encoded by the KCNC1, KCNJ11, and ABCCC8 genes respectively, in chr11p15. Tissue enrichment analysis showed significant enrichment in the small intestine, and a trend of enrichment in the cerebellum. Our findings provide evidences of consistent environmental impact from early life stress and school support index on anxiety and depression during development and also highlight the genetic association between mutations in potassium channels, which support the stress-depression connection via hypothalamic-pituitary-adrenal axis, along with the potential modulating role of potassium channels.

2.
Biomedicines ; 12(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38397942

RESUMO

RNA binding proteins (RBPs) post-transcriptionally regulate gene expression by associating with regulatory sequences in the untranslated regions of mRNAs. Cold-inducible RBP (CIRP) is a stress-induced RBP that was recently shown to modulate inflammation in response to cellular stress, where it increases or decreases pro-tumorigenic (proinflammatory) cytokines in different contexts. CIRP expression is altered in several cancers, including breast cancer, but the effects of CIRP on inflammation in breast cancer is not known. Here, we investigate if CIRP alters growth and the inflammatory profile of breast tumors. Transgenic mice overexpressing CIRP in the mammary epithelium were crossed with the PyMT mouse model of breast cancer, and the effects on both early and late tumorigenesis and inflammation were assessed. The effects of CIRP knockdown were also assessed in Py2T cell grafts. Overexpression of CIRP led to decreased tumorigenesis in the PyMT mouse model. Conversely, the knockdown of CIRP in Py2T cell grafts led to increased tumor growth. Luminex cytokine assays assessed the effects on the inflammatory environment. CIRP/PyMT mammary glands/mammary tumors and serum had decreased cytokines that promote inflammation, angiogenesis, and metastasis compared to PyMT mammary glands and serum, documenting a shift towards an environment less supportive of tumorigenesis. CIRP overexpression also decreased CD4+ helper T cells and increased CD8+ cytotoxic T cells in mammary tumors. Overall, these data support a role for CIRP as a potent antitumor molecule that suppresses both local and systemic pro-tumorigenic inflammation.

3.
Res Sq ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260249

RESUMO

There are currently only very few efficacious drug treatments for SCZ and BD, none of which can significantly ameliorate cognitive symptoms. Thus, further research is needed in elucidating molecular pathways linked to cognitive function and antipsychotic treatment. Circular RNAs (circRNAs) are stable brain-enriched non-coding RNAs, derived from the covalent back-splicing of precursor mRNA molecules. CircHomer1 is a neuronal-enriched, activity-dependent circRNA, derived from the precursor of the long HOMER1B mRNA isoform, which is significantly downregulated in the prefrontal cortex of subjects with psychosis and is able to regulate cognitive function. Even though its relevance to psychiatric disorders and its role in brain function and synaptic plasticity have been well established, little is known about the molecular mechanisms that underlie circHomer1 biogenesis in response to neuronal activity and psychiatric drug treatment. Here we suggest that the RNA-binding protein (RBP) FUS positively regulates neuronal circHomer1 expression. Furthermore, we show that the MEK/ERK and PKA/CREB pathways positively regulate neuronal circHomer1 expression, as well as promote the transcription of Fus and Eif4a3, another RBP previously shown to activate circHomer1 biogenesis. We then demonstrate via both in vitro and in vivo studies that NMDA and mGluR5 receptors are upstream modulators of circHomer1 expression. Lastly, we report that in vivo D2R antagonism increases circHomer1 expression, whereas 5HT2AR blockade reduces circHomer1 levels in multiple brain regions. Taken together, this study allows us to gain novel insights into the molecular circuits that underlie the biogenesis of a psychiatric disease-associated circRNA.

4.
G3 (Bethesda) ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37433118

RESUMO

RNA-sequencing (RNA-seq) technology has led to a surge of neuroscience research using animal models to probe the complex molecular mechanisms underlying brain function and behavior, including substance use disorders. However, findings from rodent studies often fail to be translated into clinical treatments. Here, we developed a novel pipeline for narrowing candidate genes from preclinical studies by translational potential and demonstrated its utility in 2 RNA-seq studies of rodent self-administration. This pipeline uses evolutionary conservation and preferential expression of genes across brain tissues to prioritize candidate genes, increasing the translational utility of RNA-seq in model organisms. Initially, we demonstrate the utility of our prioritization pipeline using an uncorrected P-value. However, we found no differentially expressed genes in either dataset after correcting for multiple testing with false discovery rate (FDR < 0.05 or <0.1). This is likely due to low statistical power that is common across rodent behavioral studies, and, therefore, we additionally illustrate the use of our pipeline on a third dataset with differentially expressed genes corrected for multiple testing (FDR < 0.05). We also advocate for improved RNA-seq data collection, statistical testing, and metadata reporting that will bolster the field's ability to identify reliable candidate genes and improve the translational value of bioinformatics in rodent research.


Assuntos
Cocaína , Animais , RNA-Seq , Sequência de Bases , Análise de Sequência de RNA
5.
Res Sq ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131621

RESUMO

Anxiety and depression in children and adolescents warrant special attention as a public health issue given their devastating and long-term effects on development and mental health. Multiple factors, ranging from genetic vulnerabilities to environmental stressors, influence the risk for the disorders. This study investigated the impact of environmental factors and genomics on anxiety and depression in children and adolescents across three cohorts: the Adolescent Brain and Cognitive Development Study (US), the Consortium on Vulnerability to Externalizing Disorders and Addictions (India), and IMAGEN (Europe). Linear mixed-effect models, recursive feature elimination regression, and LASSO regression models were used to identify the environmental impact on anxiety/depression. Genome-wide association analyses were then performed for all three cohorts with consideration of significant environmental effects. The most significant and consistent environmental factors were early life stress and school risk. A novel SNP, rs79878474 in chr11p15, was identified as the most promising SNP associated with anxiety and depression. Gene set analysis found significant enrichment in regions of chr11p15 and chr3q26, in the function of potassium channels and insulin secretion, particularly Kv3, Kir-6.2, SUR potassium channels encoded by the KCNC1, KCNJ11, and ABCCC8 genes, respectively, in chr11p15. Tissue enrichment analysis showed significant enrichment in the small intestine and a trend of enrichment in the cerebellum. The study highlights the consistent impact of early life stress and school risk on anxiety and depression during development and suggests the potential role of mutations in potassium channels and the cerebellum region. Further investigation is needed to better understand these findings.

6.
Methods Mol Biol ; 2636: 71-83, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881296

RESUMO

In addition to expressing a large number of protein-coding transcripts, including alternatively spliced isoforms of the same mRNAs, neurons express a large number of noncoding RNAs. These include microRNAs (miRNAs), circular RNAs (circRNAs), and other regulatory RNAs. The isolation and quantitative analyses of diverse types of RNAs in neurons are critical to understand not only the posttranscriptional mechanisms regulating mRNA levels and their translation but also the potential of several RNAs expressed in the same neurons to regulate these processes by generating networks of competing endogenous RNAs (ceRNAs). This chapter will describe methods for the isolation and analyses of circRNA and miRNA levels from the same brain tissue sample.


Assuntos
MicroRNAs , MicroRNAs/genética , RNA Circular , RNA não Traduzido , RNA Mensageiro/genética , Neurônios
7.
bioRxiv ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36909568

RESUMO

Spreading depolarization (SD) is a slowly propagating wave of profound depolarization that sweeps through cortical tissue. While much emphasis has been placed on the damaging consequences of SD, there is uncertainty surrounding the potential activation of beneficial pathways such as cell survival and plasticity. The present study used unbiased assessments of gene expression to evaluate that compensatory and repair mechanisms could be recruited following SD, regardless of the induction method, which prior to this work had not been assessed. We also tested assumptions of appropriate controls and the spatial extent of expression changes that are important for in vivo SD models. SD clusters were induced with either KCl focal application or optogenetic stimulation in healthy mice. Cortical RNA was extracted and sequenced to identify differentially expressed genes (DEGs). SDs using both induction methods significantly upregulated 16 genes (versus sham animals) that included the cell proliferation-related genes FOS, JUN, and DUSP6, the plasticity-related genes ARC and HOMER1, and the inflammation-related genes PTGS2, EGR2, and NR4A1. The contralateral hemisphere is commonly used as control tissue for DEG studies, but its activity could be modified by near-global disruption of activity in the adjacent brain. We found 21 upregulated genes when comparing SD-involved cortex versus tissue from the contralateral hemisphere of the same animals. Interestingly, there was almost complete overlap (21/16) with the DEGs identified using sham controls. Neuronal activity also differs in SD initiation zones, where sustained global depolarization is required to initiate propagating events. We found that gene expression varied as a function of the distance from the SD initiation site, with greater expression differences observed in regions further away. Functional and pathway enrichment analyses identified axonogenesis, branching, neuritogenesis, and dendritic growth as significantly enriched in overlapping DEGs. Increased expression of SD-induced genes was also associated with predicted inhibition of pathways associated with cell death, and apoptosis. These results identify novel biological pathways that could be involved in plasticity and/or circuit modification in brain tissue impacted by SD. These results also identify novel functional targets that could be tested to determine potential roles in recovery and survival of peri-infarct tissues.

8.
medRxiv ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798402

RESUMO

Anxiety and depression in children and adolescents warrant special attention as a public health issue given their devastating and long-term effects on development and mental health. Multiple factors, ranging from genetic vulnerabilities to environmental stressors, influence the risk for the disorders. This study aimed to understand how environmental factors and genomics affect children and adolescents anxiety and depression across three cohorts: Adolescent Brain and Cognitive Development Study (US, age of 9-10), Consortium on Vulnerability to Externalizing Disorders and Addictions (INDIA, age of 6-17) and IMAGEN (EUROPE, age of 14). We performed data harmonization and identified the environmental impact on anxiety/depression using a linear mixed-effect model, recursive feature elimination regression, and the LASSO regression model. Subsequently, genome-wide association analyses with consideration of significant environmental factors were performed for all three cohorts by mega-analysis and meta-analysis, followed by functional annotations. The results showed that multiple environmental factors contributed to the risk of anxiety and depression during development, where early life stress and school risk had the most significant and consistent impact across all three cohorts. Both meta and mega-analysis identified a novel SNP rs79878474 in chr11p15 to be the most promising SNP associated with anxiety and depression. Gene set analysis on the common genes mapped from top promising SNPs of both meta and mega analyses found significant enrichment in regions of chr11p15 and chr3q26, in the function of potassium channels and insulin secretion, in particular Kv3, Kir-6.2, SUR potassium channels encoded by the KCNC1, KCNJ11, and ABCCC8 genes respectively, in chr11p15. Tissue enrichment analysis showed significant enrichment in the small intestine and a trend of enrichment in the cerebellum. Our findings provide evidence of consistent environmental impact from early life stress and school risks on anxiety and depression during development and also highlight the genetic association between mutations in potassium channels along with the potential role of the cerebellum region, which are worthy of further investigation.

9.
bioRxiv ; 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38234846

RESUMO

Recent microbiome-brain axis findings have shown evidence of the modulation of microbiome community as an environmental mediator in brain function and psychiatric illness. This work is focused on the role of the microbiome in understanding a rarely investigated environmental involvement in schizophrenia (SZ), especially in relation to brain circuit dysfunction. We leveraged high throughput microbial 16s rRNA sequencing and functional neuroimaging techniques to enable the delineation of microbiome-brain network links in SZ. N=213 SZ and healthy control (HC) subjects were assessed for the oral microbiome. Among them, 139 subjects were scanned by resting-state functional magnetic resonance imaging (rsfMRI) to derive brain functional connectivity. We found a significant microbiome compositional shift in SZ beta diversity (weighted UniFrac distance, p= 6×10 -3 ; Bray-Curtis distance p = 0.021). Fourteen microbial species involving pro-inflammatory and neurotransmitter signaling and H 2 S production, showed significant abundance alterations in SZ. Multivariate analysis revealed one pair of microbial and functional connectivity components showing a significant correlation of 0.46. Thirty five percent of microbial species and 87.8% of brain functional network connectivity from each component also showed significant differences between SZ and HC with strong performance in classifying SZ from HC, with an area under curve (AUC) = 0.84 and 0.87, respectively. The results suggest a potential link between oral microbiome dysbiosis and brain functional connectivity alteration in relation to SZ, possibly through immunological and neurotransmitter signaling pathways and the hypothalamic-pituitary-adrenal axis, supporting for future work in characterizing the role of oral microbiome in mediating effects on SZ brain functional activity.

10.
Front Cell Neurosci ; 17: 1292661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162001

RESUMO

Spreading depolarization (SD) is a slowly propagating wave of profound depolarization that sweeps through cortical tissue. While much emphasis has been placed on the damaging consequences of SD, there is uncertainty surrounding the potential activation of beneficial pathways such as cell survival and plasticity. The present study used unbiased assessments of gene expression to evaluate that compensatory and repair mechanisms could be recruited following SD, regardless of the induction method, which prior to this work had not been assessed. We also tested assumptions of appropriate controls and the spatial extent of expression changes that are important for in vivo SD models. SD clusters were induced with either KCl focal application or optogenetic stimulation in healthy mice. Cortical RNA was extracted and sequenced to identify differentially expressed genes (DEGs). SDs using both induction methods significantly upregulated 16 genes (vs. sham animals) that included the cell proliferation-related genes FOS, JUN, and DUSP6, the plasticity-related genes ARC and HOMER1, and the inflammation-related genes PTGS2, EGR2, and NR4A1. The contralateral hemisphere is commonly used as control tissue for DEG studies, but its activity could be modified by near-global disruption of activity in the adjacent brain. We found 21 upregulated genes when comparing SD-involved cortex vs. tissue from the contralateral hemisphere of the same animals. Interestingly, there was almost complete overlap (21/16) with the DEGs identified using sham controls. Neuronal activity also differs in SD initiation zones, where sustained global depolarization is required to initiate propagating events. We found that gene expression varied as a function of the distance from the SD initiation site, with greater expression differences observed in regions further away. Functional and pathway enrichment analyses identified axonogenesis, branching, neuritogenesis, and dendritic growth as significantly enriched in overlapping DEGs. Increased expression of SD-induced genes was also associated with predicted inhibition of pathways associated with cell death, and apoptosis. These results identify novel biological pathways that could be involved in plasticity and/or circuit modification in brain tissue impacted by SD. These results also identify novel functional targets that could be tested to determine potential roles in the recovery and survival of peri-infarct tissues.

11.
Front Hum Neurosci ; 16: 1001692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438633

RESUMO

Background: Structural neuroimaging studies have identified similarities in the brains of individuals diagnosed with schizophrenia (SZ) and bipolar I disorder (BP), with overlap in regions of gray matter (GM) deficits between the two disorders. Recent studies have also shown that the symptom phenotypes associated with SZ and BP may allow for a more precise categorization than the current diagnostic criteria. In this study, we sought to identify GM alterations that were unique to each disorder and whether those alterations were also related to unique symptom profiles. Materials and methods: We analyzed the GM patterns and clinical symptom presentations using independent component analysis (ICA), hierarchical clustering, and n-way biclustering in a large (N ∼ 3,000), merged dataset of neuroimaging data from healthy volunteers (HV), and individuals with either SZ or BP. Results: Component A showed a SZ and BP < HV GM pattern in the bilateral insula and cingulate gyrus. Component B showed a SZ and BP < HV GM pattern in the cerebellum and vermis. There were no significant differences between diagnostic groups in these components. Component C showed a SZ < HV and BP GM pattern bilaterally in the temporal poles. Hierarchical clustering of the PANSS scores and the ICA components did not yield new subgroups. N-way biclustering identified three unique subgroups of individuals within the sample that mapped onto different combinations of ICA components and symptom profiles categorized by the PANSS but no distinct diagnostic group differences. Conclusion: These multivariate results show that diagnostic boundaries are not clearly related to structural differences or distinct symptom profiles. Our findings add support that (1) BP tend to have less severe symptom profiles when compared to SZ on the PANSS without a clear distinction, and (2) all the gray matter alterations follow the pattern of SZ < BP < HV without a clear distinction between SZ and BP.

12.
Nat Commun ; 13(1): 4929, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995794

RESUMO

Schizophrenia is a highly heritable psychiatric disorder characterized by widespread functional and structural brain abnormalities. However, previous association studies between MRI and polygenic risk were mostly ROI-based single modality analyses, rather than identifying brain-based multimodal predictive biomarkers. Based on schizophrenia polygenic risk scores (PRS) from healthy white people within the UK Biobank dataset (N = 22,459), we discovered a robust PRS-associated brain pattern with smaller gray matter volume and decreased functional activation in frontotemporal cortex, which distinguished schizophrenia from controls with >83% accuracy, and predicted cognition and symptoms across 4 independent schizophrenia cohorts. Further multi-disease comparisons demonstrated that these identified frontotemporal alterations were most severe in schizophrenia and schizo-affective patients, milder in bipolar disorder, and indistinguishable from controls in autism, depression and attention-deficit hyperactivity disorder. These findings indicate the potential of the identified PRS-associated multimodal frontotemporal network to serve as a trans-diagnostic gene intermediated brain biomarker specific to schizophrenia.


Assuntos
Transtorno Bipolar , Esquizofrenia , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/genética , Encéfalo , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética , Herança Multifatorial/genética , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética
13.
Schizophr Bull ; 48(6): 1306-1317, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-35988022

RESUMO

BACKGROUND AND HYPOTHESIS: Schizophrenia (SZ) and bipolar disorder (BD) share genetic risk factors, yet patients display differential levels of cognitive impairment. We hypothesized a genome-transcriptome-functional connectivity (frontoparietal)-cognition pathway linked to SZ-versus-BD differences, and conducted a multiscale study to delineate this pathway. STUDY DESIGNS: Large genome-wide studies provided single nucleotide polymorphisms (SNPs) conferring more risk for SZ than BD, and we identified their regulated genes, namely SZ-biased SNPs and genes. We then (a) computed the polygenic risk score for SZ (PRSSZ) of SZ-biased SNPs and examined its associations with imaging-based frontoparietal functional connectivity (FC) and cognitive performances; (b) examined the spatial correlation between ex vivo postmortem expressions of SZ-biased genes and in vivo, SZ-related FC disruptions across frontoparietal regions; (c) investigated SZ-versus-BD differences in frontoparietal FC; and (d) assessed the associations of frontoparietal FC with cognitive performances. STUDY RESULTS: PRSSZ of SZ-biased SNPs was significantly associated with frontoparietal FC and working memory test scores. SZ-biased genes' expressions significantly correlated with SZ-versus-BD differences in FC across frontoparietal regions. SZ patients showed more reductions in frontoparietal FC than BD patients compared to controls. Frontoparietal FC was significantly associated with test scores of multiple cognitive domains including working memory, and with the composite scores of all cognitive domains. CONCLUSIONS: Collectively, these multiscale findings support the hypothesis that SZ-biased genetic risk, through transcriptome regulation, is linked to frontoparietal dysconnectivity, which in turn contributes to differential cognitive deficits in SZ-versus BD, suggesting that potential biomarkers for more precise patient stratification and treatment.


Assuntos
Transtorno Bipolar , Transtornos Cognitivos , Esquizofrenia , Humanos , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/genética , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Transcriptoma , Cognição
14.
Commun Biol ; 5(1): 672, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798971

RESUMO

The KH-type splicing regulatory protein (KHSRP) is an RNA-binding protein linked to decay of mRNAs with AU-rich elements. KHSRP was previously shown to destabilize Gap43 mRNA and decrease neurite growth in cultured embryonic neurons. Here, we have tested functions of KHSRP in vivo. We find upregulation of 1460 mRNAs in neocortex of adult Khsrp-/- mice, of which 527 bind to KHSRP with high specificity. These KHSRP targets are involved in pathways for neuronal morphology, axon guidance, neurotransmission and long-term memory. Khsrp-/- mice show increased axon growth and dendritic spine density in vivo. Neuronal cultures from Khsrp-/- mice show increased axon and dendrite growth and elevated KHSRP-target mRNAs, including subcellularly localized mRNAs. Furthermore, neuron-specific knockout of Khsrp confirms these are from neuron-intrinsic roles of KHSRP. Consistent with this, neurons in the hippocampus and infralimbic cortex of Khsrp-/- mice show elevations in frequency of miniature excitatory postsynaptic currents. The Khsrp-/- mice have deficits in trace conditioning and attention set-shifting tasks compared Khsrp+/+ mice, indicating impaired prefrontal- and hippocampal-dependent memory consolidation with loss of KHSRP. Overall, these results indicate that deletion of KHSRP impairs neuronal development resulting in alterations in neuronal morphology and function by changing post-transcriptional control of neuronal gene expression.


Assuntos
Consolidação da Memória , Proteínas de Ligação a RNA , Transmissão Sináptica , Transativadores , Animais , Camundongos , Camundongos Knockout , RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transativadores/genética , Transativadores/metabolismo
15.
Nucleic Acids Res ; 50(10): 5772-5792, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35556128

RESUMO

Axonally synthesized proteins support nerve regeneration through retrograde signaling and local growth mechanisms. RNA binding proteins (RBP) are needed for this and other aspects of post-transcriptional regulation of neuronal mRNAs, but only a limited number of axonal RBPs are known. We used targeted proteomics to profile RBPs in peripheral nerve axons. We detected 76 proteins with reported RNA binding activity in axoplasm, and levels of several change with axon injury and regeneration. RBPs with altered levels include KHSRP that decreases neurite outgrowth in developing CNS neurons. Axonal KHSRP levels rapidly increase after injury remaining elevated up to 28 days post axotomy. Khsrp mRNA localizes into axons and the rapid increase in axonal KHSRP is through local translation of Khsrp mRNA in axons. KHSRP can bind to mRNAs with 3'UTR AU-rich elements and targets those transcripts to the cytoplasmic exosome for degradation. KHSRP knockout mice show increased axonal levels of KHSRP target mRNAs, Gap43, Snap25, and Fubp1, following sciatic nerve injury and these mice show accelerated nerve regeneration in vivo. Together, our data indicate that axonal translation of the RNA binding protein Khsrp mRNA following nerve injury serves to promote decay of other axonal mRNAs and slow axon regeneration.


Assuntos
Axônios , Regeneração Nervosa , Regiões 3' não Traduzidas/genética , Animais , Axônios/metabolismo , Camundongos , Regeneração Nervosa/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo
16.
Cell Rep ; 38(3): 110282, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045295

RESUMO

Although circular RNAs (circRNAs) are enriched in the brain, their relevance for brain function and psychiatric disorders is poorly understood. Here, we show that circHomer1 is inversely associated with relative HOMER1B mRNA isoform levels in both the orbitofrontal cortex (OFC) and stem-cell-derived neuronal cultures of subjects with psychiatric disorders. We further demonstrate that in vivo circHomer1 knockdown (KD) within the OFC can inhibit the synaptic expression of Homer1b mRNA. Furthermore, we show that circHomer1 directly binds to Homer1b mRNA and that Homer1b-specific KD increases synaptic circHomer1 levels and improves OFC-mediated behavioral flexibility. Importantly, double circHomer1 and Homer1b in vivo co-KD results in a complete rescue in circHomer1-associated alterations in both chance reversal learning and synaptic gene expression. Lastly, we uncover an RNA-binding protein that can directly bind to circHomer1 and promote its biogenesis. Taken together, our data provide mechanistic insights into the importance of circRNAs in brain function and disease.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas de Arcabouço Homer/metabolismo , Córtex Pré-Frontal/metabolismo , RNA Circular/metabolismo , Reversão de Aprendizagem/fisiologia , Animais , Transtorno Bipolar/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Biology (Basel) ; 10(9)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34571817

RESUMO

The RNA-binding protein HuD (a.k.a., ELAVL4) is involved in neuronal development and synaptic plasticity mechanisms, including addiction-related processes such as cocaine conditioned-place preference (CPP) and food reward. The most studied function of this protein is mRNA stabilization; however, we have recently shown that HuD also regulates the levels of circular RNAs (circRNAs) in neurons. To examine the role of HuD in the control of coding and non-coding RNA networks associated with substance use, we identified sets of differentially expressed mRNAs, circRNAs and miRNAs in the striatum of HuD knockout (KO) mice. Our findings indicate that significantly downregulated mRNAs are enriched in biological pathways related to cell morphology and behavior. Furthermore, deletion of HuD altered the levels of 15 miRNAs associated with drug seeking. Using these sets of data, we predicted that a large number of upregulated miRNAs form competing endogenous RNA (ceRNA) networks with circRNAs and mRNAs associated with the neuronal development and synaptic plasticity proteins LSAMP and MARK3. Additionally, several downregulated miRNAs form ceRNA networks with mRNAs and circRNAs from MEF2D, PIK3R3, PTRPM and other neuronal proteins. Together, our results indicate that HuD regulates ceRNA networks controlling the levels of mRNAs associated with neuronal differentiation and synaptic physiology.

18.
Molecules ; 26(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064652

RESUMO

The neuronal Hu/ELAV-like proteins HuB, HuC and HuD are a class of RNA-binding proteins that are crucial for proper development and maintenance of the nervous system. These proteins bind to AU-rich elements (AREs) in the untranslated regions (3'-UTRs) of target mRNAs regulating mRNA stability, transport and translation. In addition to these cytoplasmic functions, Hu proteins have been implicated in alternative splicing and alternative polyadenylation in the nucleus. The purpose of this study was to identify transcriptome-wide effects of HuD deletion on both of these nuclear events using RNA sequencing data obtained from the neocortex of Elavl4-/- (HuD KO) mice. HuD KO affected alternative splicing of 310 genes, including 17 validated HuD targets such as Cbx3, Cspp1, Snap25 and Gria2. In addition, deletion of HuD affected polyadenylation of 53 genes, with the majority of significantly altered mRNAs shifting towards usage of proximal polyadenylation signals (PAS), resulting in shorter 3'-UTRs. None of these genes overlapped with those showing alternative splicing events. Overall, HuD KO had a greater effect on alternative splicing than polyadenylation, with many of the affected genes implicated in several neuronal functions and neuropsychiatric disorders.


Assuntos
Processamento Alternativo/genética , Proteína Semelhante a ELAV 4/genética , Neocórtex/metabolismo , Poliadenilação/genética , Animais , Proteína Semelhante a ELAV 4/metabolismo , Éxons/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800495

RESUMO

Identifying biomarkers is essential for early diagnosis of neurodegenerative diseases (NDs). Large (LEVs) and small extracellular vesicles (SEVs) are extracellular vesicles (EVs) of different sizes and biological functions transported in blood and they may be valid biomarkers for NDs. The aim of our study was to investigate common and different miRNA signatures in plasma derived LEVs and SEVs of Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Fronto-Temporal Dementia (FTD) patients. LEVs and SEVs were isolated from plasma of patients and healthy volunteers (CTR) by filtration and differential centrifugation and RNA was extracted. Small RNAs libraries were carried out by Next Generation Sequencing (NGS). MiRNAs discriminate all NDs diseases from CTRs and they can provide a signature for each NDs. Common enriched pathways for SEVs were instead linked to ubiquitin mediated proteolysis and Toll-like receptor signaling pathways and for LEVs to neurotrophin signaling and Glycosphingolipid biosynthesis pathway. LEVs and SEVs are involved in different pathways and this might give a specificity to their role in the spreading of the disease. The study of common and different miRNAs transported by LEVs and SEVs can be of great interest for biomarker discovery and for pathogenesis studies in neurodegeneration.


Assuntos
MicroRNA Circulante/sangue , Vesículas Extracelulares/metabolismo , Perfilação da Expressão Gênica , Doenças Neurodegenerativas/sangue , Transdução de Sinais , Idoso , Idoso de 80 Anos ou mais , MicroRNA Circulante/genética , Vesículas Extracelulares/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/genética
20.
Drug Alcohol Depend ; 221: 108585, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33647589

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are "master post-transcriptional regulators" of gene expression. Here we investigate miRNAs involved in the incentive motivation for cocaine elicited by exposure to cocaine-associated cues. METHODS: We conducted NanoString nCounter analyses of microRNA expression in the nucleus accumbens shell of male rats that had been tested for cue reactivity in a previous study. These rats had been trained to self-administer cocaine while living in isolate housing, then during a subsequent 21-day forced abstinence period they either stayed under isolate housing or switched to environmental enrichment (EE), as this EE intervention is known to decrease cocaine seeking. This allowed us to create groups of "high" and "low" cocaine seekers using a median split of cocaine-seeking behavior. RESULTS: Differential expression analysis across high- and low-seekers identified 33 microRNAs that were differentially expressed in the nucleus accumbens shell. Predicted mRNA targets of these microRNAs are implicated in synaptic plasticity, neuronal signaling, and neuroinflammation signaling, and many are known addiction-related genes. Of the 33 differentially-expressed microRNAs, 8 were specifically downregulated in the low-seeking group and another set of 8 had expression levels that were significantly correlated with cocaine-seeking behavior. CONCLUSION: These findings not only confirm the involvement of previously identified microRNAs (e.g., miR-212, miR-495) but also reveal novel microRNAs (e.g., miR-3557, miR-377) that alter, or are altered by, processes associated with cocaine-seeking behavior. Further research examining the mechanisms involved in these microRNA changes and their effects on signaling may reveal novel therapeutic targets for attenuating drug craving.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/genética , Cocaína , Animais , Comportamento Aditivo/genética , Transtornos Relacionados ao Uso de Cocaína/terapia , Condicionamento Psicológico/efeitos dos fármacos , Fissura/efeitos dos fármacos , Sinais (Psicologia) , Comportamento de Procura de Droga/efeitos dos fármacos , Meio Ambiente , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Motivação , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...