Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 104(2): e3932, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36448209

RESUMO

There is growing evidence that the Earth's climate is undergoing profound changes that are affecting biodiversity worldwide. This gives rise to the pressing need to develop robust predictions on how species will respond in order to inform conservation strategies and allow managers to adapt mitigation measures accordingly. While predictions have begun to emerge on how species at the extremes of the so-called slow-fast continuum might respond to climate change, empirical studies for species for which all demographic traits contribute relatively equally to population dynamics are lacking. Yet, climate change is expected to strongly affect them throughout their entire lifecycle. We built a 21-year integrated population model to characterize the population dynamics of the rock partridge (Alectoris graeca) in France, and tested the influence of nine weather covariates on demographic parameters. As predicted, both annual survival and breeding success were affected by weather covariates. Thick snow cover during winter was associated with low survival and small brood size the following breeding season. Brood size was higher with intermediate winter temperatures and snowmelt timing, positively correlated to breeding period temperature, but negatively correlated to temperature during the coldest fortnight and precipitation during the breeding period. Survival was positively correlated to winter temperature, but negatively to breeding period precipitation. Large-scale indices indicated that cold and wet winters were associated with small brood size the following breeding season but with high survival. Expected changes of weather conditions due to climate change are likely to impact demographic traits of the rock partridge both positively and negatively depending on the traits and on the affected weather variables. Future population dynamics will thus depend on the magnitude of these different impacts. Our study illustrates the difficulty to make strong predictions about how species with a population dynamic influenced by both survival and fecundity will respond to climate change.


Assuntos
Aves , Tempo (Meteorologia) , Animais , Estações do Ano , Temperatura , Dinâmica Populacional , Fertilidade , Mudança Climática
2.
Sci Rep ; 6: 36242, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27883016

RESUMO

The long-lived greater flamingo (Phoenicopterus roseus) is famous for performing conspicuous group displays during which adults try to acquire a new mate each year with varying success. We examined variation in the sexual display complexity (SDC) of wild flamingos aged between 4 and 37 yrs. SDC was defined as the product of richness (the number of different display movements) and versatility (the number of transitions between movements) within a 5 min behavioral sequence. In both sexes, date in the pairing season had a linear and positive effect on SDC, whereas age had a quadratic effect, with SDC increasing until about age 20yrs, and declining afterwards. SDC better explained pairing patterns than age, and positively influenced the probability of becoming a breeder. Our results thus support the idea that SDC is an honest signal of individual quality and further suggest that senescence in display could be an overlooked aspect of reproductive decline in species with no or weak pair bonding.


Assuntos
Aves/fisiologia , Comportamento Sexual Animal , Fatores Etários , Animais , Feminino , Masculino , Estações do Ano
3.
Ecol Evol ; 6(11): 3699-3710, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-28725354

RESUMO

Maternal effects occur when the mother's phenotype influences her offspring's phenotype. In birds, differential allocation in egg yolk components can allow mothers to compensate for the competitive disadvantage of junior chicks. We hypothesize that the parent-older chick conflict peaks at intermediate conditions: parents benefit from the younger chick(s) survival, but its death benefits the older chick in terms of growth and survival. We thus expect maternal compensation to follow a bell-shaped pattern in relation to environmental conditions. We studied a black-legged kittiwake (Rissa tridactyla) population where previous results revealed increased allocation of yolk testosterone in younger as compared to older chicks in intermediate conditions, in line with our theoretical framework. We therefore predicted a maternally induced increase in aggressiveness, growth, and survival for younger chicks born in intermediate environmental conditions. Controlling for parental effects and chick sex, we manipulated food availability before egg laying to create a situation with intermediate (Unfed group) and good (Fed group) environmental conditions. Within each feeding treatment, we further created experimental broods where the natural hatching order was reversed to maximize our chances to observe an effect of feeding treatment on the younger chicks' aggressiveness. As predicted, we found that chick aggressiveness was higher in younger chicks born from the Unfed group (i.e., in intermediate environmental conditions), but only when they were put in a senior position, in reversed broods. Predictions on growth and survival were not confirmed. Mothers thus seem to favor the competitiveness of their younger chick in intermediate conditions via egg yolk components, but our study also suggests that hatching asynchrony need to be small for maternal compensation to be efficient. We emphasize the need for further studies investigating other chick behaviors (e.g., begging) and focusing on the relative role of different yolk components in shaping parent-offspring conflict over sibling competition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...