Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 11(7): uhae137, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988619

RESUMO

Fruit quality traits are major breeding targets in cultivated strawberry (Fragaria × ananassa). Taking into account the requirements of both growers and consumers when selecting high-quality cultivars is a real challenge. Here, we used a diversity panel enriched with unique European accessions and the 50 K FanaSNP array to highlight the evolution of strawberry diversity over the past 160 years, investigate the molecular basis of 12 major fruit quality traits by genome-wide association studies (GWAS), and provide genetic markers for breeding. Results show that considerable improvements of key breeding targets including fruit weight, firmness, composition, and appearance occurred simultaneously in European and American cultivars. Despite the high genetic diversity of our panel, we observed a drop in nucleotide diversity in certain chromosomal regions, revealing the impact of selection. GWAS identified 71 associations with 11 quality traits and, while validating known associations (firmness, sugar), highlighted the predominance of new quantitative trait locus (QTL), demonstrating the value of using untapped genetic resources. Three of the six selective sweeps detected are related to glossiness or skin resistance, two little-studied traits important for fruit attractiveness and, potentially, postharvest shelf life. Moreover, major QTL for firmness, glossiness, skin resistance, and susceptibility to bruising are found within a low diversity region of chromosome 3D. Stringent search for candidate genes underlying QTL uncovered strong candidates for fruit color, firmness, sugar and acid composition, glossiness, and skin resistance. Overall, our study provides a potential avenue for extending shelf life without compromising flavor and color as well as the genetic markers needed to achieve this goal.

2.
J Exp Bot ; 67(19): 5643-5655, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27664957

RESUMO

The genetic control of the switch between seasonal and perpetual flowering has been deciphered in various perennial species. However, little is known about the genetic control of the dynamics of perpetual flowering, which changes abruptly at well-defined time instants during the growing season. Here, we characterize the perpetual flowering pattern and identify new genetic controls of this pattern in the cultivated strawberry. Twenty-one perpetual flowering strawberry genotypes were phenotyped at the macroscopic scale for their course of emergence of inflorescences and stolons during the growing season. A longitudinal analysis based on the segmentation of flowering rate profiles using multiple change-point models was conducted. The flowering pattern of perpetual flowering genotypes takes the form of three or four successive phases: an autumn-initiated flowering phase, a flowering pause, and a single stationary perpetual flowering phase or two perpetual flowering phases, the second one being more intense. The genetic control of flowering was analysed by quantitative trait locus mapping of flowering traits based on these flowering phases. We showed that the occurrence of a fourth phase of intense flowering is controlled by a newly identified locus, different from the locus FaPFRU, controlling the switch between seasonal and perpetual flowering behaviour. The role of this locus was validated by the analysis of data obtained previously during six consecutive years.


Assuntos
Flores/crescimento & desenvolvimento , Fragaria/crescimento & desenvolvimento , Flores/genética , Fragaria/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Modelos Biológicos , Locos de Características Quantitativas/genética , Locos de Características Quantitativas/fisiologia
3.
Plant Biotechnol J ; 14(11): 2176-2189, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27168086

RESUMO

Extending the period of fruit production is a way to substantially increase crop yield in many fruit or ornamental species. In the cultivated octoploid strawberry (Fragaria × ananassa), the most consumed small fruit worldwide, fruit production season can be extended by selecting the perpetual flowering (PF) cultivars. This trait is of considerable interest to growers and to the food industry. Four homoeologous loci controlling a single trait can be expected in such a complex octoploid species. However, we recently showed that the PF trait is under the control of the single dominant FaPFRU locus (J. Exp. Bot., 2013, 64, 1837), making it potentially amenable to marker-assisted selection (MAS). Here, we report the successful use of a strategy, based on a selective mapping using a reduced sample of individuals, to identify nine markers in close linkage to the FaPFRU allelic variant. Thus, this strategy can be used to fine map the target homoeologous loci in other complex polyploid crop species. Recombinant analysis further enabled us to reduce the locus to a region flanked by two markers, Bx083_206 and Bx215_131, corresponding to a 1.1 Mb region in the diploid F. vesca reference genome. This region comprises 234 genes, including 15 flowering associated genes. Among these, the FLOWERING LOCUS T (FT) is known to be a key activator of flowering. The close association between the PF trait and the FaPFRU flanking markers was validated using an additional segregating population and genetic resources. This study lays the foundation for effective and rapid breeding of PF strawberry cultivars by MAS.


Assuntos
Flores/genética , Fragaria/genética , Ligação Genética/genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliploidia
4.
New Phytol ; 202(1): 161-173, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24308826

RESUMO

FT/TFL1 family members have been known to be involved in the development and flowering in plants. In rose, RoKSN, a TFL1 homologue, is a key regulator of flowering, whose absence causes continuous flowering. Our objectives are to functionally validate RoKSN and to explore its mode of action in rose. We complemented Arabidopsis tfl1 mutants and ectopically expressed RoKSN in a continuous-flowering (CF) rose. Using different protein interaction techniques, we studied RoKSN interactions with RoFD and RoFT and possible competition. In Arabidopsis, RoKSN complemented the tfl1 mutant by rescuing late flowering and indeterminate growth. In CF roses, the ectopic expression of RoKSN led to the absence of flowering. Different branching patterns were observed and some transgenic plants had an increased number of leaflets per leaf. In these transgenic roses, floral activator transcripts decreased. Furthermore, RoKSN was able to interact both with RoFD and the floral activator, RoFT. Protein interaction experiments revealed that RoKSN and RoFT could compete with RoFD for repression and activation of blooming, respectively. We conclude that RoKSN is a floral repressor and is also involved in the vegetative development of rose. RoKSN forms a complex with RoFD and could compete with RoFT for repression of flowering.


Assuntos
Flores/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Rosa/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Teste de Complementação Genética , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Mutação/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Reprodução , Rosa/genética
5.
J Exp Bot ; 64(7): 1837-48, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23554259

RESUMO

Strawberry (Fragaria sp.) stands as an interesting model for studying flowering behaviour and its relationship with asexual plant reproduction in polycarpic perennial plants. Strawberry produces both inflorescences and stolons (also called runners), which are lateral stems growing at the soil surface and producing new clone plants. In this study, the flowering and runnering behaviour of two cultivated octoploid strawberry (Fragaria × ananassa Duch., 2n = 8× = 56) genotypes, a seasonal flowering genotype CF1116 and a perpetual flowering genotype Capitola, were studied along the growing season. The genetic bases of the perpetual flowering and runnering traits were investigated further using a pseudo full-sibling F1 population issued from a cross between these two genotypes. The results showed that a single major quantitative trait locus (QTL) named FaPFRU controlled both traits in the cultivated octoploid strawberry. This locus was not orthologous to the loci affecting perpetual flowering (SFL) and runnering (R) in Fragaria vesca, therefore suggesting different genetic control of perpetual flowering and runnering in the diploid and octoploid Fragaria spp. Furthermore, the FaPFRU QTL displayed opposite effects on flowering (positive effect) and on runnering (negative effect), indicating that both traits share common physiological control. These results suggest that this locus plays a major role in strawberry plant fitness by controlling the balance between sexual and asexual plant reproduction.


Assuntos
Fragaria/metabolismo , Fragaria/fisiologia , Proteínas de Plantas/metabolismo , Reprodução/fisiologia , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Reprodução/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...